本文整理汇总了Python中sklearn.metrics.pairwise.check_pairwise_arrays函数的典型用法代码示例。如果您正苦于以下问题:Python check_pairwise_arrays函数的具体用法?Python check_pairwise_arrays怎么用?Python check_pairwise_arrays使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了check_pairwise_arrays函数的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _pairwise_callable
def _pairwise_callable(X, Y, metric, **kwds):
"""Handle the callable case for pairwise_{distances,kernels}
"""
try:
X, Y = check_pairwise_arrays(X, Y)
except ValueError:
X, Y = check_pairwise_arrays(X, Y, dtype=object) # try not to convert
if X is Y:
# Only calculate metric for upper triangle
out = np.zeros((X.shape[0], Y.shape[0]), dtype='float')
iterator = itertools.combinations(range(X.shape[0]), 2)
for i, j in iterator:
out[i, j] = metric(X[i], Y[j], **kwds)
# Make symmetric
# NB: out += out.T will produce incorrect results
out = out + out.T
# Calculate diagonal
# NB: nonzero diagonals are allowed for both metrics and kernels
for i in range(X.shape[0]):
x = X[i]
out[i, i] = metric(x, x, **kwds)
else:
# Calculate all cells
out = np.empty((X.shape[0], Y.shape[0]), dtype='float')
iterator = itertools.product(range(X.shape[0]), range(Y.shape[0]))
for i, j in iterator:
out[i, j] = metric(X[i], Y[j], **kwds)
return out
开发者ID:slipguru,项目名称:adenine,代码行数:33,代码来源:optics.py
示例2: MaternKernel
def MaternKernel(X, Y=None, gamma = None, p = 0):
"""Compute the generalized normal kernel between X and Y.
The generalized normal kernel is defined as::
K(x, y) = exp(-gamma ||x-y||_1^beta)
for each pair of rows x in X and y in Y.
Parameters
----------
X : array of shape (n_samples_X, n_features)
Y : array of shape (n_samples_Y, n_features)
gamma : float
Returns
-------
kernel_matrix : array of shape (n_samples_X, n_samples_Y)
"""
assert(p == int(p))
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0 / X.shape[1]
r = manhattan_distances(X, Y)
if p == 0:
K = -gamma * r
np.exp(K, K) # exponentiate K in-place
if p == 1:
K = -gamma * r * math.sqrt(3)
np.exp(K, K) # exponentiate K in-place
K *= (1+gamma * r * math.sqrt(3))
if p == 1:
K = -gamma * r * math.sqrt(5)
np.exp(K, K) # exponentiate K in-place
K *= (1+gamma * r * math.sqrt(5) + 5./3. * (r*gamma)**2)
return K
开发者ID:larsbratholm,项目名称:ML_SK,代码行数:33,代码来源:kernels.py
示例3: poisson_kernel
def poisson_kernel(X, Y=None, gamma=None, Sigma_inv = None):
"""
Compute the poisson kernel between X and Y::
K(x, y) = exp(-gamma ||x-mu||^2/mu)
mu = centroid of X (=X if X.shape[0] == 1)
for each pair of rows x in X and y in Y.
Parameters
----------
X : array of shape (n_samples_X, n_features)
Y : array of shape (n_samples_Y, n_features)
gamma : float
Returns
-------
kernel_matrix : array of shape (n_samples_X, n_samples_Y)
"""
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0 / X.shape[1]
if Sigma_inv is None:
raise ValueError('Missing Sigma_inv')
v = X - Y
K = -0.5 * gamma * np.sqrt(v.dot(Sigma_inv).dot(v.T))
np.exp(K, K) # exponentiate K in-place
return K
开发者ID:chrinide,项目名称:kaggle,代码行数:25,代码来源:poisson.py
示例4: trimmedrbf_kernel
def trimmedrbf_kernel(X, Y=None, gamma=None, robust_gamma = None):
"""
Compute the rbf (gaussian) kernel between X and Y::
K(x, y) = exp(-gamma ||x-y||**2)
for each pair of rows x in X and y in Y.
Parameters
----------
X : array of shape (n_samples_X, n_features)
Y : array of shape (n_samples_Y, n_features)
gamma : float
Returns
-------
kernel_matrix : array of shape (n_samples_X, n_samples_Y)
"""
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0 / X.shape[1]
K = euclidean_distances(X, Y, squared=True)
print K
print "SHape kernel" + str(np.where(np.sqrt(K) > robust_gamma)[0].shape)
K[np.where(np.sqrt(K) > robust_gamma)] = robust_gamma**2
K *= -gamma
np.exp(K, K) # exponentiate K in-place
return K
开发者ID:Joaggi,项目名称:Machine-Learning,代码行数:32,代码来源:KernelKMeans.py
示例5: test_check_dense_matrices
def test_check_dense_matrices():
# Ensure that pairwise array check works for dense matrices.
# Check that if XB is None, XB is returned as reference to XA
XA = np.resize(np.arange(40), (5, 8))
XA_checked, XB_checked = check_pairwise_arrays(XA, None)
assert XA_checked is XB_checked
assert_array_equal(XA, XA_checked)
开发者ID:scikit-learn,项目名称:scikit-learn,代码行数:7,代码来源:test_pairwise.py
示例6: histogram_intersection_kernel
def histogram_intersection_kernel(X, Y = None, alpha = None, beta = None):
"""
Source: https://github.com/kuantkid/scikit-learn/commit/16c82d8f2fe763df7bfee9bbcc40016fb84affcf
Author: kuantkid
Date: Nov 20, 2012
Compute the histogram intersection kernel(min kernel)
between X and Y::
K(x, y) = \\sum_i^n min(|x_i|^\x07lpha, |y_i|^\x08eta)
Parameters
----------
X : array of shape (n_samples_1, n_features)
Y : array of shape (n_samples_2, n_features)
gamma : float
Returns
-------
Gram matrix : array of shape (n_samples_1, n_samples_2)
"""
(X, Y,) = pairwise.check_pairwise_arrays(X, Y)
if alpha is not None:
X = np.abs(X) ** alpha
if beta is not None:
Y = np.abs(Y) ** beta
(n_samples_1, n_features,) = X.shape
(n_samples_2, _,) = Y.shape
K = np.zeros(shape=(n_samples_1, n_samples_2), dtype=np.float)
for i in range(n_samples_1):
K[i] = np.sum(np.minimum(X[i], Y), axis=1)
return K
开发者ID:egomezsa,项目名称:Thesis,代码行数:30,代码来源:_MultimodalTools.py
示例7: GeneralizedNormalKernel
def GeneralizedNormalKernel(X, Y=None, gamma = None, beta = 1):
"""Compute the generalized normal kernel between X and Y.
The generalized normal kernel is defined as::
K(x, y) = exp(-gamma ||x-y||_1^beta)
for each pair of rows x in X and y in Y.
Parameters
----------
X : array of shape (n_samples_X, n_features)
Y : array of shape (n_samples_Y, n_features)
gamma : float
Returns
-------
kernel_matrix : array of shape (n_samples_X, n_samples_Y)
"""
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0 / X.shape[1]
if beta == 1:
K = -gamma * manhattan_distances(X, Y)
else:
K = -gamma * manhattan_distances(X, Y) ** beta
np.exp(K, K) # exponentiate K in-place
return K
开发者ID:larsbratholm,项目名称:ML_SK,代码行数:25,代码来源:kernels.py
示例8: test_check_sparse_arrays
def test_check_sparse_arrays():
""" Ensures that checks return valid sparse matrices. """
rng = np.random.RandomState(0)
XA = rng.random_sample((5, 4))
XA_sparse = csr_matrix(XA)
XB = rng.random_sample((5, 4))
XB_sparse = csr_matrix(XB)
XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse)
# compare their difference because testing csr matrices for
# equality with '==' does not work as expected.
assert_true(abs(XA_sparse - XA_checked).nnz == 0)
assert_true(abs(XB_sparse - XB_checked).nnz == 0)
XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XA_sparse)
assert_true(XA_sparse == XB_checked)
assert_true(abs(XA_sparse - XA_checked).nnz == 0)
开发者ID:BloodD,项目名称:scikit-learn,代码行数:17,代码来源:test_pairwise.py
示例9: test_check_XB_returned
def test_check_XB_returned():
""" Ensure that if XA and XB are given correctly, they return as equal."""
# Check that if XB is not None, it is returned equal.
# Note that the second dimension of XB is the same as XA.
XA = np.resize(np.arange(40), (5, 8))
XB = np.resize(np.arange(32), (4, 8))
XA_checked, XB_checked = check_pairwise_arrays(XA, XB)
assert_array_equal(XA, XA_checked)
assert_array_equal(XB, XB_checked)
开发者ID:SHoltzen,项目名称:scikit-learn,代码行数:9,代码来源:test_pairwise.py
示例10: test_check_sparse_arrays
def test_check_sparse_arrays():
""" Ensures that checks return valid sparse matrices. """
rng = np.random.RandomState(0)
XA = rng.random_sample((5, 4))
XA_sparse = csr_matrix(XA)
XB = rng.random_sample((5, 4))
XB_sparse = csr_matrix(XB)
XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse)
assert_equal(XA_sparse, XA_checked)
assert_equal(XB_sparse, XB_checked)
开发者ID:Solvi,项目名称:scikit-learn,代码行数:10,代码来源:test_pairwise.py
示例11: test_check_tuple_input
def test_check_tuple_input():
# Ensures that checks return valid tuples.
rng = np.random.RandomState(0)
XA = rng.random_sample((5, 4))
XA_tuples = tuplify(XA)
XB = rng.random_sample((5, 4))
XB_tuples = tuplify(XB)
XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples)
assert_array_equal(XA_tuples, XA_checked)
assert_array_equal(XB_tuples, XB_checked)
开发者ID:scikit-learn,项目名称:scikit-learn,代码行数:10,代码来源:test_pairwise.py
示例12: test_check_preserve_type
def test_check_preserve_type():
# Ensures that type float32 is preserved.
XA = np.resize(np.arange(40), (5, 8)).astype(np.float32)
XB = np.resize(np.arange(40), (5, 8)).astype(np.float32)
XA_checked, XB_checked = check_pairwise_arrays(XA, None)
assert_equal(XA_checked.dtype, np.float32)
# both float32
XA_checked, XB_checked = check_pairwise_arrays(XA, XB)
assert_equal(XA_checked.dtype, np.float32)
assert_equal(XB_checked.dtype, np.float32)
# mismatched A
XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float), XB)
assert_equal(XA_checked.dtype, np.float)
assert_equal(XB_checked.dtype, np.float)
# mismatched B
XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(np.float))
assert_equal(XA_checked.dtype, np.float)
assert_equal(XB_checked.dtype, np.float)
开发者ID:dsquareindia,项目名称:scikit-learn,代码行数:22,代码来源:test_pairwise.py
示例13: _cosine_distances_prenorm
def _cosine_distances_prenorm(self, X, Y):
"""
Return cosine distances based on a prenormalized vectors.
It allows for much faster computation of cosine distances.
"""
if not self.prenorm:
raise Exception(
'Vectors must be prenormalized!')
if Y is None:
Y = X
X, Y = smp.check_pairwise_arrays(X, Y)
sims = X.dot(Y.T)
if scipy.sparse.issparse(sims):
sims = sims.todense()
return 1 - sims
开发者ID:jameswenzel,项目名称:semspaces,代码行数:18,代码来源:space.py
示例14: first_periodic_kernel
def first_periodic_kernel(X, Y=None, gamma=None, period=None):
# TODO: Add mathematical form of the kernel in the docstring
"""Compute the first periodic kernel between *X* and *Y*.
Parameters
----------
X : array of shape (n_samples_X, n_features)
Y : array of shape (n_samples_Y, n_features)
gamma : float, default None
If None, default to 1.0 / n_samples_X
period : float, default None
If None, default to 2 * pi.
This parameter should not be default as
wrong estimation lead to poor learning score.
Returns
-------
kernel_matrix : array of shape (n_samples_X, n_samples_Y)
"""
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 0.8
if period is None:
period = 2. * pi
a = -log(gamma) / period
b = 2 * pi / period
c = sqrt(pi / a) * (exp(- b ** 2 / (4 * a)) + 1)
K = euclidean_distances(X, Y, squared=True)
# TODO: Optimize to avoid temporary?
return exp(-a * K) * (1 + cos(b * sqrt(K))) / c
开发者ID:operalib,项目名称:operalib,代码行数:37,代码来源:metrics.py
示例15: cosine_similarity
def cosine_similarity(X, Y=None):
"""Compute cosine similarity between samples in X and Y.
Cosine similarity, or the cosine kernel, computes similarity as the
normalized dot product of X and Y:
K(X, Y) = <X, Y> / (||X||*||Y||)
On L2-normalized data, this function is equivalent to linear_kernel.
Parameters
----------
X : array_like, sparse matrix
with shape (n_samples_X, n_features).
Y : array_like, sparse matrix (optional)
with shape (n_samples_Y, n_features).
Returns
-------
kernel matrix : array_like
An array with shape (n_samples_X, n_samples_Y).
"""
# to avoid recursive import
X, Y = check_pairwise_arrays(X, Y)
X_normalized = normalize(X, copy=True)
if X is Y:
Y_normalized = X_normalized
else:
Y_normalized = normalize(Y, copy=True)
K = linear_kernel(X_normalized, Y_normalized)
return K
开发者ID:iwonasado,项目名称:kaggle,代码行数:36,代码来源:bulldozers.py
示例16: _prep_X_Y_for_cython
def _prep_X_Y_for_cython(X, Y):
X, Y = check_pairwise_arrays(X, Y)
X, Y = X.astype(np.double, order='C'), Y.astype(np.double, order='C').T # transposing Y here!
res = np.zeros((X.shape[0], Y.shape[1]), dtype=X.dtype)
return X, Y, res
开发者ID:tgsmith61591,项目名称:skutil,代码行数:5,代码来源:kernel.py
示例17: pairwise_distances
def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds):
""" Compute the distance matrix from a vector array X and optional Y.
This method takes either a vector array or a distance matrix, and returns
a distance matrix. If the input is a vector array, the distances are
computed. If the input is a distances matrix, it is returned instead.
This method provides a safe way to take a distance matrix as input, while
preserving compatibility with many other algorithms that take a vector
array.
If Y is given (default is None), then the returned matrix is the pairwise
distance between the arrays from both X and Y.
Valid values for metric are:
- From scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
'manhattan']. These metrics support sparse matrix inputs.
- From scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis',
'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean',
'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule']
See the documentation for scipy.spatial.distance for details on these
metrics. These metrics do not support sparse matrix inputs.
Note that in the case of 'cityblock', 'cosine' and 'euclidean' (which are
valid scipy.spatial.distance metrics), the scikit-learn implementation
will be used, which is faster and has support for sparse matrices (except
for 'cityblock'). For a verbose description of the metrics from
scikit-learn, see the __doc__ of the sklearn.pairwise.distance_metrics
function.
Read more in the :ref:`User Guide <metrics>`.
Parameters
----------
X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \
[n_samples_a, n_features] otherwise
Array of pairwise distances between samples, or a feature array.
Y : array [n_samples_b, n_features], optional
An optional second feature array. Only allowed if metric != "precomputed".
metric : string, or callable
The metric to use when calculating distance between instances in a
feature array. If metric is a string, it must be one of the options
allowed by scipy.spatial.distance.pdist for its metric parameter, or
a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS.
If metric is "precomputed", X is assumed to be a distance matrix.
Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays from X as input and return a value indicating
the distance between them.
n_jobs : int
The number of jobs to use for the computation. This works by breaking
down the pairwise matrix into n_jobs even slices and computing them in
parallel.
If -1 all CPUs are used. If 1 is given, no parallel computing code is
used at all, which is useful for debugging. For n_jobs below -1,
(n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
are used.
`**kwds` : optional keyword parameters
Any further parameters are passed directly to the distance function.
If using a scipy.spatial.distance metric, the parameters are still
metric dependent. See the scipy docs for usage examples.
Returns
-------
D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]
A distance matrix D such that D_{i, j} is the distance between the
ith and jth vectors of the given matrix X, if Y is None.
If Y is not None, then D_{i, j} is the distance between the ith array
from X and the jth array from Y.
"""
if (metric not in _VALID_METRICS and
not callable(metric) and metric != "precomputed"):
raise ValueError("Unknown metric %s. "
"Valid metrics are %s, or 'precomputed', or a "
"callable" % (metric, _VALID_METRICS))
if metric == "precomputed":
X, _ = check_pairwise_arrays(X, Y, precomputed=True)
return X
elif metric in PAIRWISE_DISTANCE_FUNCTIONS:
func = PAIRWISE_DISTANCE_FUNCTIONS[metric]
elif callable(metric):
func = partial(_pairwise_callable, metric=metric, **kwds)
else:
if issparse(X) or issparse(Y):
raise TypeError("scipy distance metrics do not"
" support sparse matrices.")
dtype = bool if metric in PAIRWISE_BOOLEAN_FUNCTIONS else None
X, Y = check_pairwise_arrays(X, Y, dtype=dtype)
#.........这里部分代码省略.........
开发者ID:slipguru,项目名称:adenine,代码行数:101,代码来源:optics.py
注:本文中的sklearn.metrics.pairwise.check_pairwise_arrays函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论