本文整理汇总了Python中sklearn.svm.fit函数的典型用法代码示例。如果您正苦于以下问题:Python fit函数的具体用法?Python fit怎么用?Python fit使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了fit函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: leave_one_out_cv
def leave_one_out_cv(gram_matrix, labels, alg = 'SVM'):
"""
leave-one-out cross-validation
"""
scores = []
preds = []
loo = sklearn.cross_validation.LeaveOneOut(len(labels))
for train_index, test_index in loo:
X_train, X_test = gram_matrix[train_index][:,train_index], gram_matrix[test_index][:, train_index]
y_train, y_test = labels[train_index], labels[test_index]
if(alg == 'SVM'):
svm = sklearn.svm.SVC(kernel = 'precomputed')
svm.fit(X_train, y_train)
preds += svm.predict(X_test).tolist()
score = svm.score(X_test, y_test)
elif(alg == 'kNN'):
knn = sklearn.neighbors.KNeighborsClassifier()
knn.fit(X_train, y_train)
preds += knn.predict(X_test).tolist()
score = knn.score(X_test, y_test)
scores.append(score)
print "Mean accuracy: %f" %(np.mean(scores))
print "Stdv: %f" %(np.std(scores))
return preds, scores
开发者ID:svegapons,项目名称:PyBDGK,代码行数:26,代码来源:Classification.py
示例2: svm_iterkernel
def svm_iterkernel(train_data, train_labels, test_data, test_labels, op_name_dir):
label_set=np.unique(train_labels)
if op_name_dir != ('None' or 'none'):
fo=open(op_name_dir,'a')
predict_list={}
for kernel in ['linear']: #, 'poly', 'rbf']:
t0=time.time()
svm = SVC(C=1., kernel=kernel, cache_size=10240)
svm.fit(train_data, train_labels)
prediction=svm.predict(test_data)
predict_list[kernel]=prediction
pred_acc_tot =(float(np.sum(prediction == test_labels)))/len(test_labels)
print time.time() - t0, ',kernel = '+kernel, ',pred acc = '+str(round(pred_acc_tot*100))
if op_name_dir != ('None' or 'none'):
fo.write('time='+str(time.time() - t0)+'sec,kernel='+kernel+',pred acc='+str(round(pred_acc_tot*100))+'\n')
for lab_unq in label_set:
pred_acc=(prediction == lab_unq) & (test_labels == lab_unq)
pred_acc=float(pred_acc.sum())/(len(test_labels[test_labels == lab_unq]))
print 'pred_'+str(lab_unq)+','+str(round(pred_acc*100))
if op_name_dir != ('None' or 'none'):
fo.write('pred_'+str(lab_unq)+','+str(round(pred_acc*100))+'\n')
if op_name_dir != ('None' or 'none'):
fo.close()
return predict_list
开发者ID:DaveOC90,项目名称:Tissue-Segmentation,代码行数:30,代码来源:svm_iterkernel.py
示例3: trainSVM
def trainSVM(filteredFaces, labels, subjects, e):
uniqueSubjects = np.unique(subjects)
accuracies = []
masterK = filteredFaces.dot(filteredFaces.T)
for testSubject in uniqueSubjects:
idxs = np.nonzero(subjects != testSubject)[0]
someFilteredFacesTrain = filteredFaces[idxs]
someLabels = labels[idxs]
y = someLabels == e
K = masterK[idxs, :]
K = K[:, idxs]
svm = sklearn.svm.SVC(kernel="precomputed")
svm.fit(K, y)
idxs = np.nonzero(subjects == testSubject)[0]
someFilteredFaces = filteredFaces[idxs]
someLabels = labels[idxs]
y = someLabels == e
yhat = svm.decision_function(someFilteredFaces.dot(someFilteredFacesTrain.T))
if len(np.unique(y)) > 1:
auc = sklearn.metrics.roc_auc_score(y, yhat)
else:
auc = np.nan
print "{}: {}".format(testSubject, auc)
accuracies.append(auc)
accuracies = np.array(accuracies)
accuracies = accuracies[np.isfinite(accuracies)]
print np.mean(accuracies), np.median(accuracies)
开发者ID:jwhitehill,项目名称:EngagementRecognition,代码行数:29,代码来源:train_detectors.py
示例4: train
def train():
training_set=[]
training_labels=[]
os.chdir("/Users/muyunyan/Desktop/EC500FINAL/logo/")
counter=0
a=os.listdir(".")
for i in a:
os.chdir(i)
print(i)
for d in os.listdir("."):
img = cv2.imread(d)
res=cv2.resize(img,(250,250))
gray_image = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
xarr=np.squeeze(np.array(gray_image).astype(np.float32))
m,v=cv2.PCACompute(xarr)
arr= np.array(v)
flat_arr= arr.ravel()
training_set.append(flat_arr)
training_labels.append(i)
os.chdir("..")
trainData=training_set
responses=training_labels
svm = svm.SVC()
svm.fit(trainData,responses)
return svm
开发者ID:Martina526,项目名称:LogoDetectionInVideo,代码行数:25,代码来源:svm_video.py
示例5: run_model
def run_model(train_data, train_labels, test_data, test_labels):
'''
Algorithm which will take in a set of training text and labels to train a bag of words model
This model is then used with a logistic regression algorithm to predict the labels for a second set of text
Method modified from code available at:
https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-1-for-beginners-bag-of-words
Args:
train_data_text: Text training set. Needs to be iterable
train_labels: Training set labels
test_data_text: The text to
Returns:
pred_labels: The predicted labels as determined by logistic regression
'''
#use Logistic Regression to train a model
svm = SVC()
# we create an instance of Neighbours Classifier and fit the data.
svm.fit(train_data, train_labels)
#Now that we have something trained we can check if it is accurate with the test set
pred_labels = svm.predict(test_data)
perform_results = performance_metrics.get_perform_metrics(test_labels, pred_labels)
#Perform_results is a dictionary, so we should add other pertinent information to the run
perform_results['vector'] = 'Bag_of_Words'
perform_results['alg'] = 'Support_Vector_Machine'
return pred_labels, perform_results
开发者ID:aflower15,项目名称:pythia,代码行数:29,代码来源:svm.py
示例6: trainOneSVM
def trainOneSVM(masterK, y, subjects):
Cs = 1.0 / np.array([0.1, 0.5, 2.5, 12.5, 62.5, 312.5])
# Cs = 10. ** np.arange(-5, +6)/2.
uniqueSubjects, subjectIdxs = np.unique(subjects, return_inverse=True)
highestAccuracy = -float("inf")
NUM_MINI_FOLDS = 4
for C in Cs: # For each regularization value
# print "C={}".format(C)
accuracies = []
for i in range(NUM_MINI_FOLDS): # For each test subject
testIdxs = np.nonzero(subjectIdxs % NUM_MINI_FOLDS == i)[0]
trainIdxs = np.nonzero(subjectIdxs % NUM_MINI_FOLDS != i)[0]
if len(np.unique(y[testIdxs])) > 1:
K = masterK[trainIdxs, :]
K = K[:, trainIdxs]
svm = sklearn.svm.SVC(kernel="precomputed", C=C)
svm.fit(K, y[trainIdxs])
K = masterK[testIdxs, :]
K = K[:, trainIdxs] # I.e., need trainIdxs dotted with testIdxs
accuracy = sklearn.metrics.roc_auc_score(y[testIdxs], svm.decision_function(K))
# print accuracy
accuracies.append(accuracy)
if np.mean(accuracies) > highestAccuracy:
highestAccuracy = np.mean(accuracies)
bestC = C
svm = sklearn.svm.SVC(kernel="precomputed", C=bestC)
svm.fit(masterK, y)
return svm
开发者ID:jwhitehill,项目名称:EngagementRecognition,代码行数:29,代码来源:train_detectors.py
示例7: main
def main():
data = pickle.load(open('../submodular_20.pickle'))
train, train_labels, test, test_labels = Load20NG()
vectorizer = sklearn.feature_extraction.text.CountVectorizer(binary=True,
lowercase=False)
vectorizer.fit(train + test)
train_vectors = vectorizer.transform(train)
test_vectors = vectorizer.transform(test)
svm = sklearn.svm.SVC(probability=True, kernel='rbf', C=10,gamma=0.001)
svm.fit(train_vectors, train_labels)
json_ret = {}
json_ret['class_names'] = ['Atheism', 'Christianity']
json_ret['instances'] = []
explanations = data['explanations']['20ng']['svm']
idxs = data['submodular_idx']['20ng']['svm'][:10]
for i in idxs:
json_obj = {}
json_obj['id'] = i
idx = i
instance = test_vectors[idx]
json_obj['true_class'] = test_labels[idx]
json_obj['c1'] = {}
json_obj['c1']['predict_proba'] = list(svm.predict_proba(test_vectors[idx])[0])
exp = explanations[idx]
json_obj['c1']['exp'] = exp
json_obj['c1']['data'] = get_pretty_instance(test[idx], exp, vectorizer)
json_ret['instances'].append(json_obj)
import json
open('static/exp2_local.json', 'w').write('data = %s' % json.dumps(json_ret))
开发者ID:UW-MODE,项目名称:naacl16-demo,代码行数:30,代码来源:generate_json.py
示例8: q20
def q20():
X, y = load_data('/Users/pjhades/code/lab/ml/train.dat')
y = set_binlabel(y, 0)
# init hit counts
gammas = [1, 10, 100, 1000, 10000]
hits = {}
for gamma in gammas:
hits[gamma] = 0
repeat = 100
for round in range(repeat):
print('round {0}/{1}'.format(round, repeat), end=', ')
err_min = 1
gamma_min = max(gammas) + 1
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=1000)
for gamma in gammas:
svm = sklearn.svm.SVC(C=0.1, kernel='rbf', gamma=gamma)
svm.fit(X_train, y_train)
err = get_error(svm, X_val, y_val)
if err < err_min or (err == err_min and gamma < gamma_min):
err_min = err
gamma_min = gamma
hits[gamma_min] += 1
print('gamma={0}'.format(gamma_min))
for gamma in gammas:
print('{0} hits {1} times'.format(gamma, hits[gamma]))
开发者ID:pjhades,项目名称:coursera,代码行数:30,代码来源:1.py
示例9: q15
def q15():
X_train, y_train = load_data('/Users/pjhades/code/lab/ml/train.dat')
y = set_binlabel(y_train, 0)
svm = sklearn.svm.SVC(C=0.01, kernel='linear')
svm.fit(X_train, y)
print(linalg.norm(svm.coef_))
开发者ID:pjhades,项目名称:coursera,代码行数:7,代码来源:1.py
示例10: k_fold_cv
def k_fold_cv(gram_matrix, labels, folds = 10, alg = 'SVM', shuffle = True):
"""
K-fold cross-validation
"""
pdb.set_trace()
scores = []
preds = []
loo = sklearn.cross_validation.KFold(len(labels), folds, shuffle = shuffle, random_state = random.randint(0,100))
#loo = sklearn.cross_validation.LeaveOneOut(len(labels))
for train_index, test_index in loo:
X_train, X_test = gram_matrix[train_index][:,train_index], gram_matrix[test_index][:, train_index]
y_train, y_test = labels[train_index], labels[test_index]
if(alg == 'SVM'):
svm = sklearn.svm.SVC(kernel = 'precomputed')
svm.fit(X_train, y_train)
preds += svm.predict(X_test).tolist()
score = svm.score(X_test, y_test)
elif(alg == 'kNN'):
knn = sklearn.neighbors.KNeighborsClassifier()
knn.fit(X_train, y_train)
preds += knn.predict(X_test).tolist()
score = knn.score(X_test, y_test)
scores.append(score)
print "Mean accuracy: %f" %(np.mean(scores))
print "Stdv: %f" %(np.std(scores))
return preds, scores
开发者ID:svegapons,项目名称:PyBDGK,代码行数:29,代码来源:Classification.py
示例11: svm_train
def svm_train(X,y,k):
C_range = 10.0 ** np.arange(-2, 9)
gamma_range = 10.0 ** np.arange(-5, 4)
param_grid = dict(gamma=gamma_range, C=C_range)
cv = StratifiedKFold(y=y,n_folds=k)
svm = GridSearchCV(SVC(), param_grid=param_grid, cv=cv)
svm.fit(X,y)
return svm
开发者ID:anaherey,项目名称:tandem-mSVM,代码行数:8,代码来源:tandem_classification.py
示例12: svm_liblinear_solver
def svm_liblinear_solver(X, y, C, tol=1e-6, max_iter=100, verbose=False):
svm = sklearn.svm.LinearSVC(loss='hinge', tol=tol, C=C, verbose=verbose,
intercept_scaling=10, max_iter=max_iter)
now = time.clock()
svm.fit(X, y)
res_time = time.clock() - now
return {'w0': svm.intercept_[0],
'w': svm.coef_.copy()[0],
'time': res_time}
开发者ID:TSholohova,项目名称:code-examples,代码行数:9,代码来源:lab3.py
示例13: trainSVM
def trainSVM(svm, sv, y):
print "\ntraining SVM"
# cross validate 5 times
scores = cross_val_score(svm, sv, y, cv=5)
print scores
# fit the data to the labels
svm.fit(sv, y)
return svm
开发者ID:bradenkatzman,项目名称:AI,代码行数:9,代码来源:problem2_SVMs.py
示例14: q16_17
def q16_17():
X_train, y_train = load_data('/Users/pjhades/code/lab/ml/train.dat')
for goal in [0, 2, 4, 6, 8]:
y = set_binlabel(y_train, goal)
svm = sklearn.svm.SVC(C=0.01, kernel='poly', degree=2, coef0=1, gamma=1)
svm.fit(X_train, y)
ein = get_error(svm, X_train, y)
print('{0} vs not {0}, ein={1}'.format(goal, ein), end=', ')
print('sum of alphas={0}'.format(np.sum(np.abs(svm.dual_coef_))))
开发者ID:pjhades,项目名称:coursera,代码行数:10,代码来源:1.py
示例15: q19
def q19():
X_train, y_train = load_data('/Users/pjhades/code/lab/ml/train.dat')
X_test, y_test = load_data('/Users/pjhades/code/lab/ml/test.dat')
y_train = set_binlabel(y_train, 0)
y_test = set_binlabel(y_test, 0)
for gamma in [10000, 1000, 1, 10, 100]:
svm = sklearn.svm.SVC(C=0.1, kernel='rbf', gamma=gamma)
svm.fit(X_train, y_train)
print('gamma={0:<10}, Eout={1}'.format(gamma, get_error(svm, X_test, y_test)))
开发者ID:pjhades,项目名称:coursera,代码行数:11,代码来源:1.py
示例16: hw1q18
def hw1q18():
print "----------------------------------------"
print " Homework 1 Question 18 "
print "----------------------------------------"
Y_train_0 = (Y_train == 0).astype(int)
Y_test_0 = (Y_test == 0).astype(int)
print "in the training set:"
print "n(+) =", np.count_nonzero(Y_train_0 == 1), "n(-) =", np.count_nonzero(Y_train_0 == 0)
print "in the test set:"
print "n(+) =", np.count_nonzero(Y_test_0 == 1), "n(-) =", np.count_nonzero(Y_test_0 == 0)
for C in (0.001, 0.01, 0.1, 1, 10):
svm = sklearn.svm.SVC(C=C, kernel="rbf", gamma=100, tol=1e-7, shrinking=True, verbose=False)
svm.fit(X_train, Y_train_0)
print "----------------------------------------"
print "C =", C
support = svm.support_
coef = svm.dual_coef_[0]
b = svm.intercept_[0]
print "nSV =", len(support)
Y_predict = svm.predict(X_test)
print "in the prediction:"
print "n(+) =", np.count_nonzero(Y_predict == 1), "n(-) =", np.count_nonzero(Y_predict == 0)
print "E_out =", np.count_nonzero(Y_test_0 != Y_predict)
print
fig = plt.figure()
plt.suptitle("C =" + str(C))
plt.subplot(311)
plt.title("Training data: green +, red -")
plot_01(X_train, Y_train_0)
plt.tick_params(axis="x", labelbottom="off")
plt.subplot(312)
plt.title("Prediction on test data: green +, red -")
plot_01(X_test, Y_predict)
plt.tick_params(axis="x", labelbottom="off")
plt.subplot(313)
plt.title("Support vectors: blue")
plt.plot(X_train[:, 0], X_train[:, 1], "r.")
plt.plot(X_train[support, 0], X_train[support, 1], "b.")
plt.show()
开发者ID:huayue21,项目名称:Machine-Learning-Techniques-NTU,代码行数:52,代码来源:hw1q15.py
示例17: q18
def q18():
X_train, y_train = load_data('/Users/pjhades/code/lab/ml/train.dat')
X_test, y_test = load_data('/Users/pjhades/code/lab/ml/test.dat')
y_train = set_binlabel(y_train, 0)
y_test = set_binlabel(y_test, 0)
for C in [0.001, 0.01, 0.1, 1, 10]:
svm = sklearn.svm.SVC(C=C, kernel='rbf', gamma=100)
svm.fit(X_train, y_train)
print('C={0}'.format(C))
print('# support vectors =', np.sum(svm.n_support_))
print('Eout =', get_error(svm, X_test, y_test))
开发者ID:pjhades,项目名称:coursera,代码行数:14,代码来源:1.py
示例18: runSVM
def runSVM(self):
"""
Runs the SVM on 5 different splits of cross validation data
"""
for train, test in self.kf:
svm = self.models["SVM"]
train_set, train_labels = self.getCurrFoldTrainData(train)
test_set, test_labels = self.getCurrFoldTestData(test)
svm.fit(train_set, train_labels)
preds = svm.predict(test_set)
acc = self.getAccuracy(test_labels, preds)
print "(SVM) Percent correct is", acc
开发者ID:urielmandujano,项目名称:ensemble_santander,代码行数:14,代码来源:ensemble.py
示例19: hw1q15
def hw1q15():
svm = sklearn.svm.SVC(C=0.01, kernel="linear", shrinking=False, verbose=True)
X_train_0 = X_train
Y_train_0 = (Y_train == 0).astype(int)
svm.fit(X_train_0, Y_train_0)
w = svm.coef_[0]
b = svm.intercept_[0]
print "w =", w
print "norm(w) =", np.linalg.norm(w, ord=2)
print "b =", b
开发者ID:huayue21,项目名称:Machine-Learning-Techniques-NTU,代码行数:14,代码来源:hw1q15.py
示例20: trainTest
def trainTest():
data2010, labels2010 = read_tac('2010')
data2011, labels2011 = read_tac("2011")
#classifiers
gnb = naive_bayes.GaussianNB()
svm = svm.SVC(kernel = "linear")
logReg = linear_model.LogisticRegression()
gnb.fit(data2010, labels2010)
svm.fit(data2010, labels2010)
logReg.fit(data2010, labels2010)
gnbPrediction = gnb.predict(data2011)
svmPrediction = svm.predict(data2011)
logRegPrediction = logReg.predict(data2011)
gnbAccuracy = accuracy(labels2011, gnbPrediction)
svmAccuracy = accuracy(labels2011, svmPrediction)
logRegAccuracy = accuracy(labels2011, logRegPrediction)
confusionMatrix = metrics.confusion_matrix(labels2011, logRegPrediction)
print "Results:"
print "Gaussian Naive Bayes: "
print gnbAccuracy
print "Support Vector Machine: "
print svmAccuracy
print "Logistic Regression: "
print logRegAccuracy
print confusionMatrix
fh.write("Results:" + "\n")
fh.write("Gaussian Naive Bayes: " + "\n")
fh.write(gnbAccuracy + "\n")
fh.write("Support Vector Machine: " + "\n")
fh.write(svmAccuracy + "\n")
fh.write("Logistic Regression: " + "\n")
fh.write(logRegAccuracy + "\n")
for i in confusionMatrix:
fh.write(str(i))
fh.write("\n")
fh.write("-------------------------------------------------\n")
fh.write("\n\n")
开发者ID:daveguy,项目名称:Comp599,代码行数:46,代码来源:a1.py
注:本文中的sklearn.svm.fit函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论