• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python svm.predict函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.svm.predict函数的典型用法代码示例。如果您正苦于以下问题:Python predict函数的具体用法?Python predict怎么用?Python predict使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了predict函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_svc_invalid_break_ties_param

def test_svc_invalid_break_ties_param(SVCClass):
    X, y = make_blobs(random_state=42)

    svm = SVCClass(kernel="linear", decision_function_shape='ovo',
                   break_ties=True, random_state=42).fit(X, y)

    with pytest.raises(ValueError, match="break_ties must be False"):
        svm.predict(y)
开发者ID:kevin-coder,项目名称:scikit-learn-fork,代码行数:8,代码来源:test_svm.py


示例2: testLinear

	def testLinear(self):
		## 加载数据
		dataArr, labelArr = self.loadDataSet('data/dataset2svm/testSet.txt')
		svm = SVMLib()
		## 训练一个线性分类器
		ws, b = svm.fit(dataArr, labelArr, 0.6, 0.001, 40)
		print ws
		dataMat = mat(dataArr)
		## 前半部分计算值为分类结果,后面为实际结果
		## SVM分类器是个二元分类器,其结果为-1或1
		## 因此训练时,训练集的值也为-1或1
		print '-----------------'
		print svm.predict(dataMat[0], ws, b), labelArr[0]
开发者ID:freedream520,项目名称:machine-learning,代码行数:13,代码来源:SVMTest.py


示例3: testMultiLinear

	def testMultiLinear(self):
		## 加载数据
		dataArr, labelArr = self.loadMultiDataSet('data/dataset2svm/horseColicTest.txt')

		svm = SVMLib()
		## 训练一个线性分类器
		ws, b = svm.fit(dataArr, labelArr, 0.6, 0.001, 40)
		print ws
		dataMat = mat(dataArr)
		## 前半部分计算值为分类结果,后面为实际结果
		## SVM分类器是个二元分类器,其结果为-1或1
		## 因此训练时,训练集的值也为-1或1
		print '-----------------'
		## 根据SVM判断第4个数据的分类,大于0为1,小于0为-1
		print svm.predict(dataMat[3], ws, b), labelArr[3]
开发者ID:freedream520,项目名称:machine-learning,代码行数:15,代码来源:SVMTest.py


示例4: k_fold_cv

def k_fold_cv(gram_matrix, labels, folds = 10, alg = 'SVM', shuffle = True):
    """
    K-fold cross-validation
    """
    pdb.set_trace()
    scores = []
    preds = []
    loo = sklearn.cross_validation.KFold(len(labels), folds, shuffle = shuffle, random_state = random.randint(0,100))
    #loo = sklearn.cross_validation.LeaveOneOut(len(labels))
    for train_index, test_index in loo:
        X_train, X_test = gram_matrix[train_index][:,train_index], gram_matrix[test_index][:, train_index]
        y_train, y_test = labels[train_index], labels[test_index]
        if(alg == 'SVM'):
            svm = sklearn.svm.SVC(kernel = 'precomputed')
            svm.fit(X_train, y_train)
            preds += svm.predict(X_test).tolist()
            score = svm.score(X_test, y_test)
        elif(alg == 'kNN'):
            knn = sklearn.neighbors.KNeighborsClassifier()
            knn.fit(X_train, y_train)
            preds += knn.predict(X_test).tolist()
            score = knn.score(X_test, y_test)

        scores.append(score)

    print "Mean accuracy: %f" %(np.mean(scores))
    print "Stdv: %f" %(np.std(scores))

    return preds, scores
开发者ID:svegapons,项目名称:PyBDGK,代码行数:29,代码来源:Classification.py


示例5: leave_one_out_cv

def leave_one_out_cv(gram_matrix, labels, alg = 'SVM'):
    """
    leave-one-out cross-validation
    """
    scores = []
    preds = []
    loo = sklearn.cross_validation.LeaveOneOut(len(labels))
    for train_index, test_index in loo:
        X_train, X_test = gram_matrix[train_index][:,train_index], gram_matrix[test_index][:, train_index]
        y_train, y_test = labels[train_index], labels[test_index]
        if(alg == 'SVM'):
            svm = sklearn.svm.SVC(kernel = 'precomputed')
            svm.fit(X_train, y_train)
            preds += svm.predict(X_test).tolist()
            score = svm.score(X_test, y_test)
        elif(alg == 'kNN'):
            knn = sklearn.neighbors.KNeighborsClassifier()
            knn.fit(X_train, y_train)
            preds += knn.predict(X_test).tolist()
            score = knn.score(X_test, y_test)
        scores.append(score)

    print "Mean accuracy: %f" %(np.mean(scores))
    print "Stdv: %f" %(np.std(scores))

    return preds, scores
开发者ID:svegapons,项目名称:PyBDGK,代码行数:26,代码来源:Classification.py


示例6: svm_iterkernel

def svm_iterkernel(train_data, train_labels, test_data, test_labels, op_name_dir):


	label_set=np.unique(train_labels)

	if op_name_dir != ('None' or 'none'):
		fo=open(op_name_dir,'a')

	predict_list={}
	for kernel in ['linear']: #, 'poly', 'rbf']:
		t0=time.time()
		svm = SVC(C=1., kernel=kernel, cache_size=10240)
		svm.fit(train_data, train_labels)
		prediction=svm.predict(test_data)
		predict_list[kernel]=prediction
		pred_acc_tot =(float(np.sum(prediction == test_labels)))/len(test_labels)
		print time.time() - t0, ',kernel = '+kernel, ',pred acc = '+str(round(pred_acc_tot*100))
		if op_name_dir != ('None' or 'none'):
			fo.write('time='+str(time.time() - t0)+'sec,kernel='+kernel+',pred acc='+str(round(pred_acc_tot*100))+'\n')
		for lab_unq in label_set:	
			pred_acc=(prediction == lab_unq) & (test_labels == lab_unq)
			pred_acc=float(pred_acc.sum())/(len(test_labels[test_labels == lab_unq]))
			print 'pred_'+str(lab_unq)+','+str(round(pred_acc*100))	
			if op_name_dir != ('None' or 'none'):
				fo.write('pred_'+str(lab_unq)+','+str(round(pred_acc*100))+'\n')

	if op_name_dir != ('None' or 'none'):
		fo.close()

	return predict_list
开发者ID:DaveOC90,项目名称:Tissue-Segmentation,代码行数:30,代码来源:svm_iterkernel.py


示例7: get_error

def get_error(svm, X, y):
    err = 0
    N = y.shape[0]
    for i in range(N):
        if y[i] != svm.predict(X[i])[0]:
            err += 1
    return err*1. / N
开发者ID:pjhades,项目名称:coursera,代码行数:7,代码来源:1.py


示例8: run_model

def run_model(train_data, train_labels, test_data, test_labels):
    '''
    Algorithm which will take in a set of training text and labels to train a bag of words model
    This model is then used with a logistic regression algorithm to predict the labels for a second set of text
    Method modified from code available at:
    https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-1-for-beginners-bag-of-words
    Args:
        train_data_text: Text training set.  Needs to be iterable
        train_labels: Training set labels
        test_data_text: The text to
    Returns:
        pred_labels: The predicted labels as determined by logistic regression
    '''

    #use Logistic Regression to train a model
    svm = SVC()

    # we create an instance of Neighbours Classifier and fit the data.
    svm.fit(train_data, train_labels)

    #Now that we have something trained we can check if it is accurate with the test set
    pred_labels = svm.predict(test_data)
    perform_results = performance_metrics.get_perform_metrics(test_labels, pred_labels)

    #Perform_results is a dictionary, so we should add other pertinent information to the run
    perform_results['vector'] = 'Bag_of_Words'
    perform_results['alg'] = 'Support_Vector_Machine'

    return pred_labels, perform_results
开发者ID:aflower15,项目名称:pythia,代码行数:29,代码来源:svm.py


示例9: plotSVM

def plotSVM(svm,n,title):
    plt.subplot(2,2,n)
    Z = svm.predict(np.c_[xx.ravel(), yy.ravel()])

    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)
    plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired)
    plt.title(title)
开发者ID:ictmaster,项目名称:svm,代码行数:8,代码来源:Example.py


示例10: test_accuracy

def test_accuracy(svm,x,y):
    """determines the accuracy of a svm classifier on validation set"""
    hypothesis = svm.predict(x)
    flat_y = y.ravel()
    misclassification_count = 0
    for i in xrange(len(flat_y)):
        if not( hypothesis[i] == flat_y[i] ):
            misclassification_count += 1
    return misclassification_count
开发者ID:dennis-chen,项目名称:machine_learning,代码行数:9,代码来源:SVM_exercise.py


示例11: increment_svm

def increment_svm(svm, L_ids, baseline_accuracy):
    
    L = X[L_ids]
    y_l = y[L_ids]
    
    U_ids = np.array(list((set(instance_ids) - set(L_ids))))
    U = X[U_ids]
    y_u = y[U_ids]

    ordered_indices = np.argsort(svm.decision_function(U))
    smallest_indices = ordered_indices[:500]
    smallest_ids = U_ids[smallest_indices]
    largest_indices = ordered_indices[-500:]
    largest_ids = U_ids[largest_indices]
    
    high_confidence_unlabeled = scipy.sparse.vstack([U[smallest_indices], U[largest_indices]])
    high_confidence_ids = np.concatenate([smallest_ids, largest_ids])
    high_confidence_predicted_labels = svm.predict(high_confidence_unlabeled)
    high_confidence_true_labels = y[high_confidence_ids]
    
    splits = sklearn.cross_validation.StratifiedShuffleSplit(high_confidence_predicted_labels, n_iter=2, test_size=0.9)

    saved_L_primes = []
    saved_L_prime_ids = []
    saved_cv_accuracies = []

    for augment_indices, test_indices in splits:

        augment = high_confidence_unlabeled[augment_indices]
        test = high_confidence_unlabeled[test_indices]

        augment_ids = high_confidence_ids[augment_indices]
        test_ids = high_confidence_ids[test_indices]

        augment_labels = high_confidence_predicted_labels[augment_indices] 
        test_labels = high_confidence_predicted_labels[test_indices]

        L_prime = scipy.sparse.vstack([L, augment])

        y_l_prime = np.concatenate([y_l, augment_labels])
        L_prime_ids = np.concatenate([L_ids, augment_ids])

        saved_L_primes.append(L_prime)
        saved_L_prime_ids.append(L_prime_ids)    

        svm_prime = sklearn.svm.LinearSVC(penalty='l2', C=10, dual=False)
        accuracy = sklearn.cross_validation.cross_val_score(svm_prime, L_prime, y_l_prime, cv=5, n_jobs=7).mean()

        saved_cv_accuracies.append(accuracy)
            
    best_index = np.argmax(saved_cv_accuracies)
    best_L_prime_ids = saved_L_prime_ids[best_index]
    best_accuracy = saved_cv_accuracies[best_index]
    
    return best_L_prime_ids, best_accuracy
开发者ID:CalculatedContent,项目名称:tsvm,代码行数:55,代码来源:incremental_tsvm_news.py


示例12: predict_embedded_attributes_labels

def predict_embedded_attributes_labels(data_mat, svms):
    """
    Calculate class label predictions for each feature vector (=row) in data_mat.

    @return: Matrix with each column containing class labels for one feature vector.
    """
    num_attributes = len(svms)
    num_examples = data_mat.shape[0]
    A = np.zeros(shape=(num_attributes, num_examples))
    log.d("Classifying {} examples...".format(num_examples))
    for att_idx, svm in enumerate(svms):
        log.update_progress(att_idx + 1, num_attributes)
        if svm is not None:
            if sklearn.__version__ == '0.14.1':
                A[att_idx] = svm.predict(data_mat)
            else:
                # the return format of this function was changed in 0.15...
                A[att_idx] = svm.predict(data_mat).T
    print("")
    return A
开发者ID:cwiep,项目名称:query-by-online-handwriting,代码行数:20,代码来源:svm.py


示例13: test_svc_ovr_tie_breaking

def test_svc_ovr_tie_breaking(SVCClass):
    """Test if predict breaks ties in OVR mode.
    Related issue: https://github.com/scikit-learn/scikit-learn/issues/8277
    """
    X, y = make_blobs(random_state=27)

    xs = np.linspace(X[:, 0].min(), X[:, 0].max(), 1000)
    ys = np.linspace(X[:, 1].min(), X[:, 1].max(), 1000)
    xx, yy = np.meshgrid(xs, ys)

    svm = SVCClass(kernel="linear", decision_function_shape='ovr',
                   break_ties=False, random_state=42).fit(X, y)
    pred = svm.predict(np.c_[xx.ravel(), yy.ravel()])
    dv = svm.decision_function(np.c_[xx.ravel(), yy.ravel()])
    assert not np.all(pred == np.argmax(dv, axis=1))

    svm = SVCClass(kernel="linear", decision_function_shape='ovr',
                   break_ties=True, random_state=42).fit(X, y)
    pred = svm.predict(np.c_[xx.ravel(), yy.ravel()])
    dv = svm.decision_function(np.c_[xx.ravel(), yy.ravel()])
    assert np.all(pred == np.argmax(dv, axis=1))
开发者ID:kevin-coder,项目名称:scikit-learn-fork,代码行数:21,代码来源:test_svm.py


示例14: hw1q18

def hw1q18():
    print "----------------------------------------"
    print "         Homework 1 Question 18         "
    print "----------------------------------------"

    Y_train_0 = (Y_train == 0).astype(int)
    Y_test_0 = (Y_test == 0).astype(int)

    print "in the training set:"
    print "n(+) =", np.count_nonzero(Y_train_0 == 1), "n(-) =", np.count_nonzero(Y_train_0 == 0)

    print "in the test set:"
    print "n(+) =", np.count_nonzero(Y_test_0 == 1), "n(-) =", np.count_nonzero(Y_test_0 == 0)

    for C in (0.001, 0.01, 0.1, 1, 10):
        svm = sklearn.svm.SVC(C=C, kernel="rbf", gamma=100, tol=1e-7, shrinking=True, verbose=False)
        svm.fit(X_train, Y_train_0)

        print "----------------------------------------"
        print "C =", C

        support = svm.support_
        coef = svm.dual_coef_[0]
        b = svm.intercept_[0]

        print "nSV =", len(support)
        Y_predict = svm.predict(X_test)

        print "in the prediction:"
        print "n(+) =", np.count_nonzero(Y_predict == 1), "n(-) =", np.count_nonzero(Y_predict == 0)

        print "E_out =", np.count_nonzero(Y_test_0 != Y_predict)
        print

        fig = plt.figure()
        plt.suptitle("C =" + str(C))
        plt.subplot(311)
        plt.title("Training data: green +, red -")
        plot_01(X_train, Y_train_0)
        plt.tick_params(axis="x", labelbottom="off")

        plt.subplot(312)
        plt.title("Prediction on test data: green +, red -")
        plot_01(X_test, Y_predict)
        plt.tick_params(axis="x", labelbottom="off")

        plt.subplot(313)
        plt.title("Support vectors: blue")
        plt.plot(X_train[:, 0], X_train[:, 1], "r.")
        plt.plot(X_train[support, 0], X_train[support, 1], "b.")

    plt.show()
开发者ID:huayue21,项目名称:Machine-Learning-Techniques-NTU,代码行数:52,代码来源:hw1q15.py


示例15: testSVM

def testSVM(svm,zero,one):
    numcorrect = 0
    numwrong = 0
    for correct,testing in ((0,zero),(1,one)):
        for d in testing:
            import pdb;pdb.set_trace()
            r = svm.predict(d)[0]
            if(r==correct):
                numcorrect += 1
            else:
                numwrong += 1
    print "Correct",numcorrect
    print "Wrong",numwrong
开发者ID:ictmaster,项目名称:svm,代码行数:13,代码来源:Example.py


示例16: runSVM

    def runSVM(self):
        """
        Runs the SVM on 5 different splits of cross validation data
        """
        for train, test in self.kf:
            svm = self.models["SVM"]

            train_set, train_labels = self.getCurrFoldTrainData(train)
            test_set, test_labels = self.getCurrFoldTestData(test)
            svm.fit(train_set, train_labels)

            preds = svm.predict(test_set)
            acc = self.getAccuracy(test_labels, preds)
            print "(SVM) Percent correct is", acc
开发者ID:urielmandujano,项目名称:ensemble_santander,代码行数:14,代码来源:ensemble.py


示例17: test_svm

def test_svm(svm, testing_dict, name):
    num_correct = 0
    num_wrong = 0
    for correct, testing in testing_dict.items():
        for test in testing:
            r = svm.predict(test)[0]
            if r == correct:
                num_correct += 1
            else:
                num_wrong += 1
    print("\n{1} - Correct:{0}".format(num_correct, name), end="")
    print("\n{1} - Wrong:{0}".format(num_wrong, name), end="")
    accuracy = float(num_correct)/(num_correct+num_wrong)*100
    print("\n{1} - Accuracy:{0:.2f}%".format(round(accuracy,2), name), end="")
开发者ID:ictmaster,项目名称:svm,代码行数:14,代码来源:run.py


示例18: plotSVM

def plotSVM(svm, n, title):
    X = np.array(training_0[plot_num:] + 
                 training_1[plot_num:] + 
                 training_2[plot_num:])

    colors = np.array(["g" for i in training_2d_0][plot_num:] + 
                      ["r" for i in training_2d_1][plot_num:] + 
                      ["b" for i in training_2d_2][plot_num:])

    plt.subplot(2, 2, n)
    Z = svm.predict(np.c_[xx.ravel(), yy.ravel()])

    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, cmap = plt.cm.Paired, alpha = 0.8)
    plt.scatter(X[:, 0], X[:, 1], c = colors, cmap = plt.cm.Paired)
    plt.title(title)
开发者ID:jtfidje,项目名称:ikt441_assignment3,代码行数:16,代码来源:AI.py


示例19: trainTest

def trainTest():

    data2010, labels2010 = read_tac('2010')
    data2011, labels2011 = read_tac("2011")

    #classifiers
    gnb = naive_bayes.GaussianNB()
    svm = svm.SVC(kernel = "linear")
    logReg = linear_model.LogisticRegression()


    gnb.fit(data2010, labels2010)
    svm.fit(data2010, labels2010)
    logReg.fit(data2010, labels2010)

    gnbPrediction = gnb.predict(data2011)
    svmPrediction = svm.predict(data2011)
    logRegPrediction = logReg.predict(data2011)

    gnbAccuracy = accuracy(labels2011, gnbPrediction)
    svmAccuracy = accuracy(labels2011, svmPrediction)
    logRegAccuracy = accuracy(labels2011, logRegPrediction)

    confusionMatrix = metrics.confusion_matrix(labels2011, logRegPrediction)

    print "Results:"
    print "Gaussian Naive Bayes: " 
    print gnbAccuracy
    print "Support Vector Machine: " 
    print svmAccuracy
    print "Logistic Regression: " 
    print logRegAccuracy
    print confusionMatrix

    fh.write("Results:" + "\n")
    fh.write("Gaussian Naive Bayes: "  + "\n")
    fh.write(gnbAccuracy + "\n")
    fh.write("Support Vector Machine: "  + "\n")
    fh.write(svmAccuracy + "\n")
    fh.write("Logistic Regression: "  + "\n")
    fh.write(logRegAccuracy + "\n")
    for i in confusionMatrix:
        fh.write(str(i))
        fh.write("\n")
    fh.write("-------------------------------------------------\n")
    fh.write("\n\n")    
开发者ID:daveguy,项目名称:Comp599,代码行数:46,代码来源:a1.py


示例20: hw1q16

def hw1q16():
    print "----------------------------------------"
    print "         Homework 1 Question 16         "
    print "----------------------------------------"

    # polynomial kernel: (coef0 + gamma * x1.T * x2) ** degree

    for idx in (0, 2, 4, 6, 8):
        svm = sklearn.svm.SVC(
            C=0.01, kernel="poly", degree=2, gamma=1, coef0=1, tol=1e-4, shrinking=True, verbose=False
        )

        Y_train_i = (Y_train == idx).astype(int)

        svm.fit(X_train, Y_train_i)
        Y_predict_i = svm.predict(X_train)

        support = svm.support_
        coef = svm.dual_coef_[0]
        b = svm.intercept_[0]
        E_in = np.count_nonzero(Y_train_i != Y_predict_i)

        print "For class %d:" % (idx)
        print "sum(alpha) =", np.sum(np.abs(coef))
        print "b =", b
        print "E_in =", E_in

        fig = plt.figure()
        # plt.suptitle('%d vs rest' % (idx))
        plt.subplot(311)
        plt.title("Training data: green +, red -")
        plot_01(X_train, Y_train_i)
        plt.tick_params(axis="x", labelbottom="off")

        plt.subplot(312)
        plt.title("Prediction: green +, red -")
        plot_01(X_train, Y_predict_i)
        plt.tick_params(axis="x", labelbottom="off")

        plt.subplot(313)
        plt.title("Support vectors: blue")
        plt.plot(X_train[:, 0], X_train[:, 1], "r.")
        plt.plot(X_train[support, 0], X_train[support, 1], "b.")

    plt.show()
开发者ID:huayue21,项目名称:Machine-Learning-Techniques-NTU,代码行数:45,代码来源:hw1q15.py



注:本文中的sklearn.svm.predict函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python svm.LinearSVC类代码示例发布时间:2022-05-27
下一篇:
Python svm.fit函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap