本文整理汇总了Python中sklearn.utils.as_float_array函数的典型用法代码示例。如果您正苦于以下问题:Python as_float_array函数的具体用法?Python as_float_array怎么用?Python as_float_array使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了as_float_array函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: mean_absolute_error
def mean_absolute_error(y_true, y_pred):
"""
Mean absolute error and its standard deviation.
If you need only mean absolute error, use
:func:`sklearn.metrics.mean_absolute_error`
Parameters
----------
y_true : array, shape(n_samples,)
Ground truth scores
y_pred : array, shape(n_samples,)
Predicted scores
Returns
-------
mean : float
mean of squared errors
stdev : float
standard deviation of squared errors
"""
# check inputs
assert_all_finite(y_true)
y_true = as_float_array(y_true)
assert_all_finite(y_pred)
y_pred = as_float_array(y_pred)
check_consistent_length(y_true, y_pred)
# calculate errors
errs = np.abs(y_true - y_pred)
mean = np.nanmean(errs)
stdev = np.nanstd(errs)
return mean, stdev
开发者ID:tkamishima,项目名称:kamrecsys,代码行数:35,代码来源:real.py
示例2: test_np_matrix
def test_np_matrix():
"""
Confirm that input validation code does not return np.matrix
"""
X = np.arange(12).reshape(3, 4)
assert_false(isinstance(as_float_array(X), np.matrix))
assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix))
assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix))
assert_false(isinstance(atleast2d_or_csr(X), np.matrix))
assert_false(isinstance(atleast2d_or_csr(np.matrix(X)), np.matrix))
assert_false(isinstance(atleast2d_or_csr(sp.csc_matrix(X)), np.matrix))
assert_false(isinstance(atleast2d_or_csc(X), np.matrix))
assert_false(isinstance(atleast2d_or_csc(np.matrix(X)), np.matrix))
assert_false(isinstance(atleast2d_or_csc(sp.csr_matrix(X)), np.matrix))
assert_false(isinstance(safe_asarray(X), np.matrix))
assert_false(isinstance(safe_asarray(np.matrix(X)), np.matrix))
assert_false(isinstance(safe_asarray(sp.lil_matrix(X)), np.matrix))
assert_true(atleast2d_or_csr(X, copy=False) is X)
assert_false(atleast2d_or_csr(X, copy=True) is X)
assert_true(atleast2d_or_csc(X, copy=False) is X)
assert_false(atleast2d_or_csc(X, copy=True) is X)
开发者ID:GbalsaC,项目名称:bitnamiP,代码行数:26,代码来源:test_validation.py
示例3: test_np_matrix
def test_np_matrix():
# Confirm that input validation code does not return np.matrix
X = np.arange(12).reshape(3, 4)
assert_false(isinstance(as_float_array(X), np.matrix))
assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix))
assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix))
开发者ID:Afey,项目名称:scikit-learn,代码行数:7,代码来源:test_validation.py
示例4: transform_with_scaler
def transform_with_scaler( Y, scaler=None, wrt_X=[] ):
Y = as_float_array( Y )
if len(wrt_X) and not scaler:
wrt_X = as_float_array( wrt_X )
scaler = get_scaler( wrt_X )
with_mean = scaler.mean_
with_stdv = scaler.std_
Z = scaler.transform(Y)
return Z
开发者ID:karthik6505,项目名称:machinelearning,代码行数:9,代码来源:py_unsupervised_classifiers.py
示例5: item_finder_statistics
def item_finder_statistics(y_true, y_pred):
"""
Full Statistics of prediction performance
* n_samples
* mean_absolute_error: mean, stdev
* mean_squared_error: mean, rmse, stdev
* predicted: mean, stdev
* true: mean, stdev
Parameters
----------
y_true : array, shape=(n_samples,)
Ground truth scores
y_pred : array, shape=(n_samples,)
Predicted scores
Returns
-------
stats : dict
Full statistics of prediction performance
"""
# check inputs
assert_all_finite(y_true)
if not is_binary_score(y_true):
raise ValueError('True scores must be binary')
y_true = as_float_array(y_true)
assert_all_finite(y_pred)
y_pred = as_float_array(y_pred)
check_consistent_length(y_true, y_pred)
# calc statistics
stats = {}
# dataset size
stats['n_samples'] = y_true.size
# descriptive statistics of ground truth scores
stats['true'] = {'mean': np.mean(y_true), 'stdev': np.std(y_true)}
# descriptive statistics of ground predicted scores
stats['predicted'] = {'mean': np.mean(y_pred), 'stdev': np.std(y_pred)}
# statistics at least 0 and 1 must be contained in a score array
if is_binary_score(y_true, allow_uniform=False):
# AUC (area under the curve)
stats['area under the curve'] = skm.roc_auc_score(y_true, y_pred)
return stats
开发者ID:tkamishima,项目名称:kamrecsys,代码行数:51,代码来源:item_finder.py
示例6: item_finder_report
def item_finder_report(y_true, y_pred, disp=True):
"""
Report brief summary of prediction performance
* AUC
* number of data
* mean and standard dev. of true scores
* mean and standard dev. of predicted scores
Parameters
----------
y_true : array, shape(n_samples,)
Ground truth scores
y_pred : array, shape(n_samples,)
Predicted scores
disp : bool, optional, default=True
if True, print report
Returns
-------
stats : dict
belief summary of prediction performance
"""
# check inputs
assert_all_finite(y_true)
if not is_binary_score(y_true):
raise ValueError('True scores must be binary')
y_true = as_float_array(y_true)
assert_all_finite(y_pred)
y_pred = as_float_array(y_pred)
check_consistent_length(y_true, y_pred)
# calc statistics
stats = {
'n_samples': y_true.size,
'true': {'mean': np.mean(y_true), 'stdev': np.std(y_true)},
'predicted': {'mean': np.mean(y_pred), 'stdev': np.std(y_pred)}}
# statistics at least 0 and 1 must be contained in a score array
if is_binary_score(y_true, allow_uniform=False):
stats['area under the curve'] = skm.roc_auc_score(y_true, y_pred)
# display statistics
if disp:
print(
json.dumps(
stats, sort_keys=True, indent=4, separators=(',', ': '),
ensure_ascii=False), file=sys.stderr)
return stats
开发者ID:tkamishima,项目名称:kamrecsys,代码行数:51,代码来源:item_finder.py
示例7: fit
def fit(self, X, y):
n_samples, self.n_features = X.shape
self.n_outputs = y.shape[1]
self._init_fit(X)
self.hidden_activations_ = self._get_hidden_activations(X)
if self.regularized:
self._solve_regularized(as_float_array(y, copy=True))
else:
self._solve(as_float_array(y, copy=True))
return self
开发者ID:ddofer,项目名称:NeuralNetworks,代码行数:14,代码来源:elm.py
示例8: score_predictor_report
def score_predictor_report(y_true, y_pred, disp=True):
"""
Report brief summary of prediction performance
* mean absolute error
* root mean squared error
* number of data
* mean and standard dev. of true scores
* mean and standard dev. of predicted scores
Parameters
----------
y_true : array, shape(n_samples,)
Ground truth scores
y_pred : array, shape(n_samples,)
Predicted scores
disp : bool, optional, default=True
if True, print report
Returns
-------
stats : dict
belief summary of prediction performance
"""
# check inputs
assert_all_finite(y_true)
y_true = as_float_array(y_true)
assert_all_finite(y_pred)
y_pred = as_float_array(y_pred)
check_consistent_length(y_true, y_pred)
# calc statistics
stats = {
'mean absolute error': skm.mean_absolute_error(y_true, y_pred),
'root mean squared error':
np.sqrt(np.maximum(skm.mean_squared_error(y_true, y_pred), 0.)),
'n_samples': y_true.size,
'true': {'mean': np.mean(y_true), 'stdev': np.std(y_true)},
'predicted': {'mean': np.mean(y_pred), 'stdev': np.std(y_pred)}}
# display statistics
if disp:
print(json.dumps(
stats, sort_keys=True, indent=4, separators=(',', ': '),
ensure_ascii=False),
file=sys.stderr)
return stats
开发者ID:tkamishima,项目名称:kamrecsys,代码行数:49,代码来源:score_predictor.py
示例9: k_modes
def k_modes(X, n_clusters, n_init=1, max_iter=5,
verbose=False, tol=1e-4, random_state=None, copy_x=True, n_jobs=1):
"""K-modes clustering algorithm."""
if n_init <= 0:
raise ValueError("Invalid number of initializations."
" n_init=%d must be bigger than zero." % n_init)
X = as_float_array(X, copy=copy_x)
matrix_all_irm = _compute_all_irm(X, n_clusters)
best_labels, best_modes, best_mirm = None, None, -np.inf
if n_jobs == 1:
for j in range(2,n_clusters+1):
# For a single thread, less memory is needed if we just store one set
# of the best results (as opposed to one set per run per thread).
for it in range(n_init):
# run a k-modes once
labels, modes, mirm_sum = _kmodes_single(
X, j, matrix_all_irm, max_iter=max_iter,
verbose=verbose, tol=tol, random_state=random_state)
# determine if these results are the best so far
if mirm_sum >= best_mirm:
best_labels = labels.copy()
best_modes = modes.copy()
best_mirm = mirm_sum
else:
# TODO:
pass
return best_modes, best_labels, best_mirm
开发者ID:bertozo,项目名称:FeatureSelection,代码行数:31,代码来源:k_modes.py
示例10: fit
def fit(self, X, y):
"""
Fit the model using X, y as training data.
Parameters
----------
X : {array-like, sparse matrix} of shape [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like of shape [n_samples, n_outputs]
Target values (class labels in classification, real numbers in
regression)
Returns
-------
self : object
Returns an instance of self.
"""
# fit random hidden layer and compute the hidden layer activations
self.hidden_activations_ = self.hidden_layer.fit_transform(X)
# solve the regression from hidden activations to outputs
self._fit_regression(as_float_array(y, copy=True))
return self
开发者ID:adam-m-mcelhinney,项目名称:Python-ELM,代码行数:27,代码来源:elm.py
示例11: fit
def fit(self, X, y=None, **params):
"""Fit the model with X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training data, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
self : object
Returns the instance itself.
Notes
-----
Calling multiple times will update the components
"""
X = array2d(X)
n_samples, n_features = X.shape
X = as_float_array(X, copy=self.copy)
if self.iteration != 0 and n_features != self.components_.shape[1]:
raise ValueError("The dimensionality of the new data and the existing components_ does not match")
# incrementally fit the model
for i in range(0, X.shape[0]):
self.partial_fit(X[i, :])
return self
开发者ID:gaoyuankidult,项目名称:pyIPCA,代码行数:31,代码来源:hall_ipca.py
示例12: transform
def transform(self, X):
X = as_float_array(X, copy=self.copy)
if self.mean_ is not None and self.std_ is not None:
X -= self.mean_
X /= self.std_
X_whitend = np.dot(X, self.components_)
return X_whitend
开发者ID:AI42,项目名称:CNN-detection-tracking,代码行数:7,代码来源:zca.py
示例13: _fit
def _fit(self, X):
"""Fit the model to the data X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples and
n_features is the number of features.
Returns
-------
X : ndarray, shape (n_samples, n_features)
The input data, copied, centered and whitened when requested.
"""
random_state = self._random_state
X = np.atleast_2d(as_float_array(X))
self._initialize(X, random_state)
for it in range(self.n_iter):
if it % 10 == 0:
self._print_status(it)
else:
logger.info("<{}>".format(it))
self._sample_topics(random_state)
self._print_status(self.n_iter)
self.components_ = self.nzw + self.eta
self.components_ /= np.sum(self.components_, axis=1, keepdims=True)
return self.ndz
开发者ID:tboggs,项目名称:horizont,代码行数:27,代码来源:lda.py
示例14: fit
def fit(self, X):
n_samples, self.n_features = X.shape
self.n_outputs = X.shape[1]
self._init_fit(X)
self.hidden_activations_ = self._get_hidden_activations(X)
self._regularized(as_float_array(X, copy=True))
#self.coef_output_ = safe_sparse_dot(pinv2(self.hidden_activations_), X)
return self
开发者ID:YISION,项目名称:yision.github.io,代码行数:8,代码来源:elm_autoencoder.py
示例15: fit
def fit(self, X):
X = as_float_array(X, copy=self.copy)
self._mean = np.mean(X, axis=0)
X -= self._mean
sigma = np.dot(X.T,X) / X.shape[1]
U, S, V = linalg.svd(sigma)
tmp = np.dot(U, np.diag(1 / np.sqrt(S + self.regularization)))
self._components = np.dot(tmp, U.T)
return self
开发者ID:f00barin,项目名称:bilppattach,代码行数:9,代码来源:gpubilpreplogistic.py
示例16: fit
def fit(self, X, y=None):
X = array2d(X)
X = as_float_array(X, copy = self.copy)
print X.shape
sigma = np.dot(X.T,X) / X.shape[1]
U, S, V = linalg.svd(sigma)
tmp = np.dot(U, np.diag(1/np.sqrt(S+self.regularization)))
self.components_ = np.dot(tmp, U.T)
return self
开发者ID:alan-y-w,项目名称:ml_expression,代码行数:9,代码来源:ZCA.py
示例17: import_lda
def import_lda(filename):
lines = filename.read().splitlines()
nr_lines = len(lines)
labels = range(nr_lines)
features = range(nr_lines)
for i in range(nr_lines):
labels[i], data = lines[i].split(',')
features[i] = map(float, data.split())
X = as_float_array(features)
return labels, X
开发者ID:clouizos,项目名称:ProjectAI,代码行数:10,代码来源:dr_lda_lsa_cca.py
示例18: test_as_float_array
def test_as_float_array():
"""
Test function for as_float_array
"""
X = np.ones((3, 10), dtype=np.int32)
X = X + np.arange(10, dtype=np.int32)
# Checks that the return type is ok
X2 = as_float_array(X, copy=False)
np.testing.assert_equal(X2.dtype, np.float32)
# Another test
X = X.astype(np.int64)
X2 = as_float_array(X, copy=True)
# Checking that the array wasn't overwritten
assert_true(as_float_array(X, False) is not X)
# Checking that the new type is ok
np.testing.assert_equal(X2.dtype, np.float64)
# Here, X is of the right type, it shouldn't be modified
X = np.ones((3, 2), dtype=np.float32)
assert_true(as_float_array(X, copy=False) is X)
开发者ID:bbabenko,项目名称:scikit-learn,代码行数:19,代码来源:test_validation.py
示例19: transform
def transform(self, X, y=None, copy=None):
"""Perform ZCA whitening
Parameters
----------
X : array-like with shape [n_samples, n_features]
The data to whiten along the features axis.
"""
check_is_fitted(self, 'mean_')
X = as_float_array(X, copy=self.copy)
return np.dot(X - self.mean_, self.whiten_.T)
开发者ID:mwv,项目名称:zca,代码行数:11,代码来源:zca.py
示例20: get_distance_metric
def get_distance_metric(X, dtype='euclidean', normalize=True, nrows=10 ):
X = as_float_array( X )
dist = nn.DistanceMetric.get_metric('euclidean')
d = dist.pairwise(X)
print '-' * 80
print introspection( dist )
nrows=min(nrows,len(d))
for row in d[:nrows]:
print [ "%.2f" % x for x in row[:nrows] ]
print '-' * 80
return dist
开发者ID:karthik6505,项目名称:machinelearning,代码行数:11,代码来源:py_unsupervised_classifiers.py
注:本文中的sklearn.utils.as_float_array函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论