本文整理汇总了Python中sklearn.utils.atleast2d_or_csr函数的典型用法代码示例。如果您正苦于以下问题:Python atleast2d_or_csr函数的具体用法?Python atleast2d_or_csr怎么用?Python atleast2d_or_csr使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了atleast2d_or_csr函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_np_matrix
def test_np_matrix():
"""
Confirm that input validation code does not return np.matrix
"""
X = np.arange(12).reshape(3, 4)
assert_false(isinstance(as_float_array(X), np.matrix))
assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix))
assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix))
assert_false(isinstance(atleast2d_or_csr(X), np.matrix))
assert_false(isinstance(atleast2d_or_csr(np.matrix(X)), np.matrix))
assert_false(isinstance(atleast2d_or_csr(sp.csc_matrix(X)), np.matrix))
assert_false(isinstance(atleast2d_or_csc(X), np.matrix))
assert_false(isinstance(atleast2d_or_csc(np.matrix(X)), np.matrix))
assert_false(isinstance(atleast2d_or_csc(sp.csr_matrix(X)), np.matrix))
assert_false(isinstance(safe_asarray(X), np.matrix))
assert_false(isinstance(safe_asarray(np.matrix(X)), np.matrix))
assert_false(isinstance(safe_asarray(sp.lil_matrix(X)), np.matrix))
assert_true(atleast2d_or_csr(X, copy=False) is X)
assert_false(atleast2d_or_csr(X, copy=True) is X)
assert_true(atleast2d_or_csc(X, copy=False) is X)
assert_false(atleast2d_or_csc(X, copy=True) is X)
开发者ID:GbalsaC,项目名称:bitnamiP,代码行数:26,代码来源:test_validation.py
示例2: predict
def predict(self, X):
"""Predict using the multi-layer perceptron model
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Returns
-------
array, shape (n_samples)
Predicted target values per element in X.
"""
X = atleast2d_or_csr(X)
scores = self.decision_function(X)
if len(scores.shape) == 1 or self.multi_label is True:
scores = logistic_sigmoid(scores)
results = (scores > 0.5).astype(np.int)
if self.multi_label:
return self._lbin.inverse_transform(results)
else:
scores = _softmax(scores)
results = scores.argmax(axis=1)
return self.classes_[results]
开发者ID:ddofer,项目名称:NeuralNetworks,代码行数:27,代码来源:multilayer_perceptron.py
示例3: predict
def predict(self, X, n_neighbors=1):
"""Perform classification on an array of test vectors X.
The predicted class C for each sample in X is returned.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
C : array, shape = [n_samples]
Notes
-----
The default prediction is using KNeighborsClassifier, if the
instance reducition algorithm is to be performed with another
classifier, it should be explicited overwritten and explained
in the documentation.
"""
X = atleast2d_or_csr(X)
if not hasattr(self, "X_") or self.X_ is None:
raise AttributeError("Model has not been trained yet.")
if not hasattr(self, "y_") or self.y_ is None:
raise AttributeError("Model has not been trained yet.")
if self.classifier == None:
self.classifier = KNeighborsClassifier(n_neighbors=n_neighbors)
self.classifier.fit(self.X_, self.y_)
return self.classifier.predict(X)
开发者ID:dvro,项目名称:ml,代码行数:32,代码来源:baseNew.py
示例4: _joint_log_likelihood
def _joint_log_likelihood(self, X):
"""Calculate the posterior log probability of the samples X"""
X = atleast2d_or_csr(X)
neg_prob = np.log(1 - np.exp(self.feature_log_prob_))
jll = safe_sparse_dot(X, (self.feature_log_prob_ - neg_prob).T)
jll += self.class_log_prior_ + neg_prob.sum(axis=1)
return jll
开发者ID:katyasosa,项目名称:TSA,代码行数:7,代码来源:bayesian_naive_bayes.py
示例5: scatter
def scatter(data, labels=None, title=None, name=None):
"""2d PCA scatter plot with optional class info
Return the pca model to be able to introspect the components or transform
new data with the same model.
"""
data = atleast2d_or_csr(data)
if data.shape[1] == 2:
# No need for a PCA:
data_2d = data
else:
pca = RandomizedPCA(n_components=2)
data_2d = pca.fit_transform(data)
for i, c, m in zip(np.unique(labels), cycle(COLORS), cycle(MARKERS)):
plt.scatter(data_2d[labels == i, 0], data_2d[labels == i, 1],
c=c, marker=m, label=i, alpha=0.5)
plt.legend(loc='best')
if title is None:
title = "2D PCA scatter plot"
if name is not None:
title += " for " + name
plt.xlabel('First Principal Component')
plt.ylabel('Second Principal Component')
plt.title(title)
return pca
开发者ID:chrinide,项目名称:oglearn,代码行数:29,代码来源:visualization.py
示例6: fit
def fit(self, X, y):
if sparse.issparse(y):
y = np.asarray(y.todense())
self._enc = LabelEncoder()
y = self._enc.fit_transform(y)
if len(self.classes_) != 2:
raise ValueError("The number of classes must be 2, "
"use sklearn.multiclass for more classes.")
# The LabelEncoder maps the binary labels to 0 and 1 but the
# training algorithm requires the labels to be -1 and +1.
y[y==0] = -1
X = atleast2d_or_csr(X, dtype=np.float64, order="C")
if X.shape[0] != y.shape[0]:
raise ValueError("X and y have incompatible shapes.\n"
"X has %s samples, but y has %s." %
(X.shape[0], y.shape[0]))
self.weight_vector = WeightVector(X)
if self.loop_type == constants.LOOP_BALANCED_STOCHASTIC:
pegasos.train_stochastic_balanced(self, X, y)
elif self.loop_type == constants.LOOP_STOCHASTIC:
pegasos.train_stochastic(self, X, y)
else:
raise ValueError('%s: unknown loop type' % self.loop_type)
return self
开发者ID:awesome,项目名称:pegasos,代码行数:32,代码来源:base.py
示例7: decision_function
def decision_function(self, X):
"""Predict confidence scores for samples
The confidence score for a sample is the signed distance of that
sample to the hyperplane.
Parameters
----------
X : {array-like, sparse matrix}, shape = (n_samples, n_features)
Samples.
Returns
-------
array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes)
Confidence scores per (sample, class) combination. In the binary
case, confidence score for self.classes_[1] where >0 means this
class would be predicted.
"""
# handle regression (least-squared loss)
if not self.is_classif:
return LinearModel.decision_function(self, X)
X = atleast2d_or_csr(X)
n_features = self.coef_.shape[1]
if X.shape[1] != n_features:
raise ValueError("X has %d features per sample; expecting %d"
% (X.shape[1], n_features))
scores = safe_sparse_dot(X, self.coef_.T,
dense_output=True) + self.intercept_
return scores.ravel() if scores.shape[1] == 1 else scores
开发者ID:AlexandreAbraham,项目名称:nilearn,代码行数:31,代码来源:space_net.py
示例8: test_atleast2d_or_sparse
def test_atleast2d_or_sparse():
for typ in [sp.csr_matrix, sp.dok_matrix, sp.lil_matrix, sp.coo_matrix]:
X = typ(np.arange(9, dtype=float).reshape(3, 3))
Y = atleast2d_or_csr(X, copy=True)
assert_true(isinstance(Y, sp.csr_matrix))
Y.data[:] = 1
assert_array_equal(X.toarray().ravel(), np.arange(9))
Y = atleast2d_or_csc(X, copy=False)
Y.data[:] = 4
assert_true(np.all(X.data == 4)
if isinstance(X, sp.csc_matrix)
else np.all(X.toarray().ravel() == np.arange(9)))
Y = atleast2d_or_csr(X, dtype=np.float32)
assert_true(Y.dtype == np.float32)
开发者ID:adammendoza,项目名称:scikit-learn,代码行数:17,代码来源:test_validation.py
示例9: _to_csr
def _to_csr(self, X):
"""
check & convert X to csr format
"""
X = atleast2d_or_csr(X)
if not sp.issparse(X):
X = sp.csr_matrix(X)
return X
开发者ID:hijbul,项目名称:topicModels,代码行数:9,代码来源:lda.py
示例10: decision_function
def decision_function(self, X):
X = atleast2d_or_csr(X)
# compute hidden layer activations
self.hidden_activations_ = self._get_hidden_activations(X)
output = safe_sparse_dot(self.hidden_activations_, self.coef_output_)
return output
开发者ID:ddofer,项目名称:NeuralNetworks,代码行数:10,代码来源:elm.py
示例11: predict
def predict(self, X):
X = atleast2d_or_csr(X)
scores = self.decision_function(X)
# if len(scores.shape) == 1:
#scores = logistic_sigmoid(scores)
#results = (scores > 0.5).astype(np.int)
# else:
#scores = _softmax(scores)
#results = scores.argmax(axis=1)
# self.classes_[results]
return self._lbin.inverse_transform(scores)
开发者ID:ddofer,项目名称:NeuralNetworks,代码行数:13,代码来源:elm.py
示例12: predict
def predict(self, X):
"""Predict using the multi-layer perceptron model
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Returns
-------
array, shape = [n_samples]
Predicted target values per element in X.
"""
X = atleast2d_or_csr(X)
return super(DBNRegressor, self).decision_function(X)
开发者ID:ddofer,项目名称:NeuralNetworks,代码行数:14,代码来源:dbn.py
示例13: transform
def transform(self, features):
features = atleast2d_or_csr(features)
if self.mean_ is not None:
features = features - self.mean_
features = np.dot(features, self.U_reduce);
##features = safe_sparse_dot(features, self.components.T)
## features = np.dot(np.transpose(self.U[:, :self.k_components]), features)
#print 'features dimensions : ', features.shape
return features
开发者ID:Oleksandra28,项目名称:FaceRecognizer,代码行数:15,代码来源:SPCA.py
示例14: fit_transform
def fit_transform(self, X, y=None):
"""Apply dimensionality reduction on X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
New data, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
"""
X = self._fit(atleast2d_or_csr(X))
X = safe_sparse_dot(X, self.components_.T)
return X
开发者ID:xiaofeng007,项目名称:FaST-LMM,代码行数:17,代码来源:pca.py
示例15: fit
def fit(self, X, y=None):
"""Generate a random hidden layer.
Parameters
----------
X : {array-like, sparse matrix} of shape [n_samples, n_features]
Training set: only the shape is used to generate random component
values for hidden units
y : is not used: placeholder to allow for usage in a Pipeline.
Returns
-------
self
"""
X = atleast2d_or_csr(X)
self._generate_components(X)
return self
开发者ID:chrinide,项目名称:PyFV,代码行数:17,代码来源:random_layer.py
示例16: transform
def transform(self, X, y=None):
"""Generate the random hidden layer's activations given X as input.
Parameters
----------
X : {array-like, sparse matrix}, shape [n_samples, n_features]
Data to transform
y : is not used: placeholder to allow for usage in a Pipeline.
Returns
-------
X_new : numpy array of shape [n_samples, n_components]
"""
X = atleast2d_or_csr(X)
if (self.components_ is None):
raise ValueError('No components initialized')
return self._compute_hidden_activations(X)
开发者ID:chrinide,项目名称:PyFV,代码行数:17,代码来源:random_layer.py
示例17: score
def score(self, X):
"""Computer lower bound on data, very naive implementation
Parameters
----------
data : array-like, shape (N, n_features)
The data that needs to be fitted to and transformed
Returns
-------
lower bound : int
The lower bound on the log likelihood
"""
v = atleast2d_or_csr(X)
rng = check_random_state(self.random_state)
gradients, lowerbound = self._computeGradients(v.T, rng)
return lowerbound/X.shape[0]
开发者ID:adaixiaoshuai,项目名称:Variational-Autoencoder,代码行数:18,代码来源:VariationalAutoencoder_withSK.py
示例18: transform
def transform(self, X):
"""Transform the data X according to the fitted NMF model
Parameters
----------
X: {array-like, sparse matrix}, shape = [n_samples, n_features]
Data matrix to be transformed by the model
Returns
-------
data: array, [n_samples, n_components]
Transformed data
"""
X = atleast2d_or_csr(X)
H = np.zeros((X.shape[0], self.n_components))
for j in xrange(0, X.shape[0]):
H[j, :], _ = nnls(self.components_.T, X[j, :])
return H
开发者ID:steve-poulson,项目名称:inquisition,代码行数:19,代码来源:nmf2.py
示例19: inverse_transform
def inverse_transform(self, X, dict_type=dict, inverse_onehot=True):
"""Transform array or sparse matrix X back to feature mappings.
X must have been produced by this DictVectorizer's transform or
fit_transform method; it may only have passed through transformers
that preserve the number of features and their order.
In the case of one-hot/one-of-K coding, the constructed feature
names and values are returned rather than the original ones.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Sample matrix.
dict_type : callable, optional
Constructor for feature mappings. Must conform to the
collections.Mapping API.
Returns
-------
D : list of dict_type objects, length = n_samples
Feature mappings for the samples in X.
"""
X = atleast2d_or_csr(X) # COO matrix is not subscriptable
n_samples = X.shape[0]
names = self.feature_names_
dicts = [dict_type() for _ in xrange(n_samples)]
if sp.issparse(X):
for i, j in zip(*X.nonzero()):
if reverse_onehot and names[j] in self._onehot_dict and X[i, j]:
dicts[i][self._onehot_dict[names[j]][0]] = self._onehot_dict[names[j]][1]
else:
dicts[i][names[j]] = X[i, j]
else:
for i, d in enumerate(dicts):
for j, v in enumerate(X[i, :]):
if v != 0:
d[names[j]] = X[i, j]
return dicts
开发者ID:doxav,项目名称:skll,代码行数:42,代码来源:DictVectorizer.py
示例20: decision_function
def decision_function(self, X):
"""Fit the model to the data X and target y.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Returns
-------
array, shape (n_samples)
Predicted target values per element in X.
"""
X = atleast2d_or_csr(X)
a_hidden = self.activation_func(safe_sparse_dot(X, self.coef_hidden_) + self.intercept_hidden_)
output = safe_sparse_dot(a_hidden, self.coef_output_) + self.intercept_output_
if output.shape[1] == 1:
output = output.ravel()
return output
开发者ID:uci-cbcl,项目名称:DeepCADD,代码行数:20,代码来源:multilayer_perceptron.py
注:本文中的sklearn.utils.atleast2d_or_csr函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论