• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python utils.check_array函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.utils.check_array函数的典型用法代码示例。如果您正苦于以下问题:Python check_array函数的具体用法?Python check_array怎么用?Python check_array使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了check_array函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: pinball_loss

    def pinball_loss(y_true, y_pred, probs):
        """Compute the pinball loss.

        Parameters
        ----------
        pred : {array-like}, shape = [n_quantiles, n_samples] or [n_samples]
            Predictions.
        y : {array-like}, shape = [n_samples]
            Targets.

        Returns
        -------
        l : {array}, shape = [n_quantiles]
            Average loss for each quantile level.
        """
        probs = asarray(probs).reshape(-1)
        check_consistent_length(y_true, y_pred.T)
        y_true = check_array(y_true.reshape((-1, 1)),
                             ensure_2d=True)
        y_pred = check_array(y_pred.T.reshape((y_true.shape[0], -1)),
                             ensure_2d=True)
        residual = y_true - y_pred
        loss = npsum([fmax(prob * res, (prob - 1) * res) for (res, prob) in
                      zip(residual.T, probs)], axis=1)
        return loss / y_true.size
开发者ID:operalib,项目名称:operalib,代码行数:25,代码来源:quantile.py


示例2: query

    def query(self, X, **query_kwargs):
        """
        Finds the n_instances most informative point in the data provided by calling
        the query_strategy function. Returns the queried instances and its indices.

        Parameters
        ----------
        X: numpy.ndarray of shape (n_samples, n_features)
            The pool of samples from which the query strategy should choose
            instances to request labels.

        query_kwargs: keyword arguments
            Keyword arguments for the query strategy function

        Returns
        -------
        query_idx: numpy.ndarray of shape (n_instances, )
            The indices of the instances from X_pool chosen to be labelled.

        X[query_idx]: numpy.ndarray of shape (n_instances, n_features)
            The instances from X_pool chosen to be labelled.
        """
        check_array(X, ensure_2d=True)

        query_idx, query_instances = self.query_strategy(self, X, **query_kwargs)
        return query_idx, X[query_idx]
开发者ID:zhuwenxiao,项目名称:modAL,代码行数:26,代码来源:models.py


示例3: __call__

    def __call__(self, y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None):
        if self.lb_ is None:
            self.lb_ = LabelBinarizer()
            T = self.lb_.fit_transform(y_true)
        else:
            T = self.lb_.transform(y_true)

        if T.shape[1] == 1:
            T = np.append(1 - T, T, axis=1)

        Y = np.clip(y_pred, eps, 1 - eps)

        if not isinstance(Y, np.ndarray):
            raise ValueError("y_pred should be an array of floats.")

        if Y.ndim == 1:
            Y = Y[:, np.newaxis]
        if Y.shape[1] == 1:
            Y = np.append(1 - Y, Y, axis=1)

        check_consistent_length(T, Y)
        T = check_array(T)
        Y = check_array(Y)
        if T.shape[1] != Y.shape[1]:
            raise ValueError("y_true and y_pred have different number of classes " "%d, %d" % (T.shape[1], Y.shape[1]))

        Y /= Y.sum(axis=1)[:, np.newaxis]
        loss = -(T * np.log(Y)).sum(axis=1)

        return _weighted_sum(loss, sample_weight, normalize)
开发者ID:joshloyal,项目名称:Nettie,代码行数:30,代码来源:mxnet_backend.py


示例4: vote

    def vote(self, X, **predict_kwargs):
        """
        Predicts the labels for the supplied data for each learner in
        the Committee.

        Parameters
        ----------
        X: numpy.ndarray of shape (n_samples, n_features)
            The samples to cast votes.

        predict_kwargs: keyword arguments
            Keyword arguments to be passed for the learners .predict() method.

        Returns
        -------
        vote: numpy.ndarray of shape (n_samples, n_learners)
            The predicted class for each learner in the Committee
            and each sample in X.
        """
        check_array(X, ensure_2d=True)
        prediction = np.zeros(shape=(X.shape[0], len(self._learner_list)))

        for learner_idx, learner in enumerate(self._learner_list):
            prediction[:, learner_idx] = learner.predict(X, **predict_kwargs)

        return prediction
开发者ID:zhuwenxiao,项目名称:modAL,代码行数:26,代码来源:models.py


示例5: fit

    def fit(self, X, y=None):
        if self.encoding not in ['similarity',
                                 'target',
                                 'ordinal',
                                 'onehot',
                                 'onehot-dense',
                                 'ngram-count',
                                 'ngram-presence',
                                 'ngram-tfidf']:
            template = ("Encoding %s has not been implemented yet")
            raise ValueError(template % self.handle_unknown)

        if self.handle_unknown not in ['error', 'ignore']:
            template = ("handle_unknown should be either 'error' or "
                        "'ignore', got %s")
            raise ValueError(template % self.handle_unknown)

        if self.encoding == 'ordinal' and self.handle_unknown == 'ignore':
            raise ValueError("handle_unknown='ignore' is not supported for"
                             " encoding='ordinal'")

        if self.categories != 'auto':
            for cats in self.categories:
                if not np.all(np.sort(cats) == np.array(cats)):
                    raise ValueError("Unsorted categories are not yet "
                                     "supported")

        X_temp = check_array(X, dtype=None)
        if not hasattr(X, 'dtype') and np.issubdtype(X_temp.dtype, np.str_):
            X = check_array(X, dtype=np.object)
        else:
            X = X_temp

        n_samples, n_features = X.shape

        self._label_encoders_ = [LabelEncoder() for _ in range(n_features)]

        for i in range(n_features):
            le = self._label_encoders_[i]
            Xi = X[:, i]
            if self.categories == 'auto':
                le.fit(Xi)
            else:
                if self.handle_unknown == 'error':
                    valid_mask = np.in1d(Xi, self.categories[i])
                    if not np.all(valid_mask):
                        diff = np.unique(Xi[~valid_mask])
                        msg = ("Found unknown categories {0} in column {1}"
                               " during fit".format(diff, i))
                        raise ValueError(msg)
                le.classes_ = np.array(self.categories[i])

        self.categories_ = [le.classes_ for le in self._label_encoders_]
        if self.encoding == 'target':
            self.Eyx_ = [{cat: np.mean(y[X[:, i] == cat])
                          for cat in self.categories_[i]}
                         for i in range(len(self.categories_))]
            self.Ey_ = [np.mean(y)
                        for i in range(len(self.categories_))]
        return self
开发者ID:dfayzur,项目名称:dirty-cat,代码行数:60,代码来源:categorical_encoding.py


示例6: fit

    def fit(self, X_train, y_train, n_more_iter=0):
        """ Fit model with specified loss.

        Parameters
        ----------
        X : scipy.sparse.csc_matrix, (n_samples, n_features)

        y : float | ndarray, shape = (n_samples, )

        n_more_iter : int
                Number of iterations to continue from the current Coefficients.

        """

        check_consistent_length(X_train, y_train)
        y_train = check_array(y_train, ensure_2d=False, dtype=np.float64)

        X_train = check_array(X_train, accept_sparse="csc", dtype=np.float64,
                              order="F")
        self.n_iter = self.n_iter + n_more_iter

        if n_more_iter > 0:
            _check_warm_start(self, X_train)
            self.warm_start = True

        self.w0_, self.w_, self.V_ = ffm.ffm_als_fit(self, X_train, y_train)

        if self.iter_count != 0:
            self.iter_count = self.iter_count + n_more_iter
        else:
            self.iter_count = self.n_iter

        # reset to default setting
        self.warm_start = False
        return self
开发者ID:bdaskalov,项目名称:fastFM,代码行数:35,代码来源:als.py


示例7: log_loss

def log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None):
    lb = LabelBinarizer()
    T = lb.fit_transform(y_true)
    if T.shape[1] == 1:
        T = np.append(1 - T, T, axis=1)

    # Clipping
    Y = np.clip(y_pred, eps, 1 - eps)

    # This happens in cases when elements in y_pred have type "str".
    if not isinstance(Y, np.ndarray):
        raise ValueError("y_pred should be an array of floats.")

    # If y_pred is of single dimension, assume y_true to be binary
    # and then check.
    if Y.ndim == 1:
        Y = Y[:, np.newaxis]
    if Y.shape[1] == 1:
        Y = np.append(1 - Y, Y, axis=1)
    # Check if dimensions are consistent.
    check_consistent_length(T, Y)
    T = check_array(T)
    Y = check_array(Y)
    if T.shape[1] != Y.shape[1]:
        raise ValueError("y_true and y_pred have different number of classes "
                         "%d, %d" % (T.shape[1], Y.shape[1]))

    # Renormalize
    Y /= Y.sum(axis=1)[:, np.newaxis]
    loss = -(T * np.log(Y)).sum(axis=1)

    return loss 
开发者ID:Zheng-JIA,项目名称:kernelsubsampling,代码行数:32,代码来源:log_loss.py


示例8: fit_transform

    def fit_transform(self,X,y=None):
        """ 
        Generates sets of hyper-spheres for anomaly scores 
        
        Parameters
        ----------
        
        X : numpy array (nb_samples, nb_features)
            data set
    
        Returns
        -------
        
        self
        """
        t_0 = time()
        
        check_array(X)
                 
        self._sets_of_spheres = []
        if self.verbose:
            logger.info('generating sets of spheres...')
        for j in range(self.ensemble_size):
            X_s = np.random.permutation(X)[:self.sample_size,:]
            spheres = self._generate_spheres(X_s)
            self._sets_of_spheres.append(spheres)
        t_f = time() - t_0
        m,s = divmod(t_f, 60)
        h,m = divmod(m, 60)
        if self.verbose:
            logger.info('Total run time: %i:%i:%i'
                        % (h,m,s))

        return self
开发者ID:smsahu,项目名称:seldon-server,代码行数:34,代码来源:AnomalyDetection.py


示例9: csr_to_fm

    def csr_to_fm(self, X_csr, return_oh=True, indices=None):
        assert (X_csr.shape == (self.n_samples, self.n_features))

        if indices is None:
            y = check_array(X_csr.data, ensure_2d=False, copy=True)
        else:
            if isinstance(indices, tuple):
                indices_samples, indices_features = indices
            elif isinstance(indices, sp.csc_matrix):
                indices_samples, indices_features = self.fm_to_indices(indices)
            y = X_csr[indices_samples, indices_features].A[0].copy()
        if not return_oh:
            return y
        else:
            X = check_array(X_csr, accept_sparse='coo',
                            force_all_finite=False)
            n_rows, n_cols = X_csr.shape
            assert ((n_rows, n_cols) == (self.n_samples, self.n_features))
            if indices is None:
                encoder = OneHotEncoder(n_values=[self.n_samples,
                                                  self.n_features])
                X_ix = np.column_stack([X.row, X.col])
            else:
                assert (np.sorted(indices_samples) == np.sorted(X.row))
                assert (np.sorted(indices_features) == np.sorted(X.col))
                X_ix = np.column_stack([indices_samples, indices_features])
            X_oh = encoder.fit_transform(X_ix)
            return X_oh, y
开发者ID:arthurmensch,项目名称:scikit-learn-sandbox,代码行数:28,代码来源:base.py


示例10: fit

    def fit(self, X, y):
        """Fit OVK ridge regression model.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training data.

        y : {array-like}, shape = [n_samples] or [n_samples, n_targets]
            Target values. numpy.NaN for missing targets (semi-supervised
            learning).

        Returns
        -------
        self : returns an instance of self.
        """
        X = check_array(X, force_all_finite=True, accept_sparse=False,
                        ensure_2d=True)
        y = check_array(y, force_all_finite=False, accept_sparse=False,
                        ensure_2d=False)
        if y.ndim == 1:
            y = check_array(y, force_all_finite=True, accept_sparse=False,
                            ensure_2d=False)
        self._validate_params()

        self.linop_ = self._get_kernel_map(X, y)
        Gram = self.linop_._Gram(X)
        if self.lbda > 0:
            self.dual_coefs_ = dlyap(-Gram / self.lbda, self.linop_.A,
                                     y / self.lbda)
        else:
            # TODO: Check A is invertible!!
            self.dual_coefs_ = solve(Gram, y)
        return self
开发者ID:operalib,项目名称:operalib,代码行数:34,代码来源:ridge.py


示例11: _transform

    def _transform(self, X, handle_unknown='error'):

        X_temp = check_array(X, dtype=None)
        if not hasattr(X, 'dtype') and np.issubdtype(X_temp.dtype, np.str_):
            X = check_array(X, dtype=np.object)
        else:
            X = X_temp

        _, n_features = X.shape
        X_int = np.zeros_like(X, dtype=np.int)
        X_mask = np.ones_like(X, dtype=np.bool)

        for i in range(n_features):
            Xi = X[:, i]
            valid_mask = np.in1d(Xi, self.categories_[i])

            if not np.all(valid_mask):
                if handle_unknown == 'error':
                    diff = np.unique(X[~valid_mask, i])
                    msg = ("Found unknown categories {0} in column {1}"
                           " during transform".format(diff, i))
                    raise ValueError(msg)
                else:
                    # Set the problematic rows to an acceptable value and
                    # continue `The rows are marked `X_mask` and will be
                    # removed later.
                    X_mask[:, i] = valid_mask
                    Xi = Xi.copy()
                    Xi[~valid_mask] = self.categories_[i][0]
            X_int[:, i] = self._label_encoders_[i].transform(Xi)

        return X_int, X_mask
开发者ID:a-geng,项目名称:handson-ml,代码行数:32,代码来源:future_encoders.py


示例12: _add_training_data

    def _add_training_data(self, X, y):
        """
        Adds the new data and label to the known data, but does
        not retrain the model.

        Parameters
        ----------
        X: numpy.ndarray of shape (n_samples, n_features)
            The new samples for which the labels are supplied
            by the expert.

        y: numpy.ndarray of shape (n_samples, )
            Labels corresponding to the new instances in X.

        Note
        ----
        If the classifier has been fitted, the features in X
        have to agree with the training samples which the
        classifier has seen.
        """
        X, y = check_array(X), check_array(y, ensure_2d=False)
        assert len(X) == len(y), 'the number of new data points and number of labels must match'

        if type(self._X_training) != type(None):
            try:
                self._X_training = np.vstack((self._X_training, X))
                self._y_training = np.concatenate((self._y_training, y))
            except ValueError:
                raise ValueError('the dimensions of the new training data and label must'
                                 'agree with the training data and labels provided so far')

        else:
            self._X_training = X
            self._y_training = y
开发者ID:zhuwenxiao,项目名称:modAL,代码行数:34,代码来源:models.py


示例13: predict_proba

    def predict_proba(self,X):
        """Create predictions. Start a vw process. Convert data to vw format and send. 
        Returns class probability estimates for the given test data.

        X : pandas dataframe or array-like
            Test samples 
        
        Returns
        -------
        proba : array-like, shape = (n_samples, n_outputs)
            Class probability estimates.
  
        Caveats : 
        1. A seldon specific fork of wabbit_wappa is needed to allow vw to run in server mode without save_resume. Save_resume seems to cause issues with the scores returned. Maybe connected to https://github.com/JohnLangford/vowpal_wabb#it/issues/262
        """
        self._start_vw_if_needed("test")
        if isinstance(X,pd.DataFrame):
            df = X
            df_base = self._exclude_include_features(df)
            df_base = df_base.fillna(0)
        else:
            check_array(X)
            df_base = pd.DataFrame(X)
        df_vw = df_base.apply(self._convert_row,axis=1)
        predictions = None
        for (index,val) in df_vw.iteritems():
            prediction = self.vw.send_line(val,parse_result=True)
            self._start_raw_predictions()
            scores = self._get_full_scores()
            if predictions is None:
                predictions = np.array([scores])
            else:
                predictions = np.vstack([predictions,scores])
        return predictions
开发者ID:rlugojr,项目名称:seldon-server,代码行数:34,代码来源:vw.py


示例14: fit

    def fit(self, X, y):
        check_array(X, y)

        for x_i, y_i in izip(X, y):
            self.partial_fit(x_i, y_i)

        return self
开发者ID:jsouza,项目名称:pamtl,代码行数:7,代码来源:pa_regression.py


示例15: _transform_new

    def _transform_new(self, X):
        """New implementation assuming categorical input"""
        X_temp = check_array(X, dtype=None)
        if not hasattr(X, 'dtype') and np.issubdtype(X_temp.dtype, np.str_):
            X = check_array(X, dtype=np.object)
        else:
            X = X_temp

        n_samples, n_features = X.shape

        X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown)

        mask = X_mask.ravel()
        n_values = [cats.shape[0] for cats in self.categories_]
        n_values = np.array([0] + n_values)
        feature_indices = np.cumsum(n_values)

        indices = (X_int + feature_indices[:-1]).ravel()[mask]
        indptr = X_mask.sum(axis=1).cumsum()
        indptr = np.insert(indptr, 0, 0)
        data = np.ones(n_samples * n_features)[mask]

        out = sparse.csr_matrix((data, indices, indptr),
                                shape=(n_samples, feature_indices[-1]),
                                dtype=self.dtype)
        if not self.sparse:
            return out.toarray()
        else:
            return out
开发者ID:a-geng,项目名称:handson-ml,代码行数:29,代码来源:future_encoders.py


示例16: test_check_array_force_all_finiteinvalid

def test_check_array_force_all_finiteinvalid(value, force_all_finite,
                                             match_msg, retype):
    X = retype(np.arange(4).reshape(2, 2).astype(np.float))
    X[0, 0] = value
    with pytest.raises(ValueError, match=match_msg):
        check_array(X, force_all_finite=force_all_finite,
                    accept_sparse=True)
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:7,代码来源:test_validation.py


示例17: transform

 def transform(self, X):
     check_array(X, accept_sparse=['csr', 'csc'])
     if issparse(X):
         mult = spdiags(self.weights_, 0, self.length, self.length)
         X *= mult
     else:
         X *= self.weights_
     return X
开发者ID:AlexeySorokin,项目名称:pyparadigm,代码行数:8,代码来源:feature_selector.py


示例18: __init__

 def __init__(self, X, y, n_classes, batch_size):
     self.X = check_array(X, dtype=np.float32, ensure_2d=False,
                          allow_nd=True)
     self.y = check_array(y, ensure_2d=False, dtype=None)
     self.n_classes = n_classes
     self.batch_size = batch_size
     self._input_shape = [batch_size] + list(X.shape[1:])
     self._output_shape = [batch_size, n_classes] if n_classes > 1 else [batch_size]
开发者ID:Erkhamion,项目名称:skflow,代码行数:8,代码来源:data_feeder.py


示例19: test_check_array_on_mock_dataframe

def test_check_array_on_mock_dataframe():
    arr = np.array([[0.2, 0.7], [0.6, 0.5], [0.4, 0.1], [0.7, 0.2]])
    mock_df = MockDataFrame(arr)
    checked_arr = check_array(mock_df)
    assert_equal(checked_arr.dtype,
                 arr.dtype)
    checked_arr = check_array(mock_df, dtype=np.float32)
    assert_equal(checked_arr.dtype, np.dtype(np.float32))
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:8,代码来源:test_validation.py


示例20: fit

    def fit(self, X, y):
        X = check_array(X)
        y = check_array(y)

        for x_i, y_i in izip(X, y):
            self.partial_fit(x_i.reshape(-1, 1), y_i.reshape(1, -1))

        return self
开发者ID:jsouza,项目名称:pamtl,代码行数:8,代码来源:partl_regression.py



注:本文中的sklearn.utils.check_array函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python utils.check_arrays函数代码示例发布时间:2022-05-27
下一篇:
Python utils.check_X_y函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap