• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python utils.check_arrays函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.utils.check_arrays函数的典型用法代码示例。如果您正苦于以下问题:Python check_arrays函数的具体用法?Python check_arrays怎么用?Python check_arrays使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了check_arrays函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: __init__

 def __init__(self, X, y, n_classes, batch_size):
     check_arrays(X, dtype=np.float32)
     check_arrays(y, dtype=None)
     self.X = X
     self.y = y
     self.n_classes = n_classes
     self.batch_size = batch_size
开发者ID:dmollaaliod,项目名称:skflow,代码行数:7,代码来源:__init__.py


示例2: fit

    def fit(self, X, y=None):
        """Fit the model to the data X.

        Parameters
        ----------
        X : {array-like, sparse matrix} shape (n_samples, n_features)
            Training data.

        Returns
        -------
        self : BernoulliRBM
            The fitted model.
        """
        X, = check_arrays(X, sparse_format='csr', dtype=np.float)
        n_samples = X.shape[0]
        rng = check_random_state(self.random_state)

        self.components_ = np.asarray(
            rng.normal(0, 0.01, (self.n_components, X.shape[1])),
            order='fortran')
        self.intercept_hidden_ = np.zeros(self.n_components, )
        self.intercept_visible_ = np.zeros(X.shape[1], )
        self.h_samples_ = np.zeros((self.batch_size, self.n_components))

        n_batches = int(np.ceil(float(n_samples) / self.batch_size))
        batch_slices = list(gen_even_slices(n_batches * self.batch_size,
                                            n_batches, n_samples))

        for iteration in xrange(1, self.n_iter + 1):
            for batch_slice in batch_slices:
                self._fit(X[batch_slice], rng)
        return self
开发者ID:Markusjsommer,项目名称:classnotes,代码行数:32,代码来源:rbms.py


示例3: predict

    def predict(self, X):
        """Predict regression target for X.

The predicted regression target of an input sample is computed as the
mean predicted regression targets of the estimators in the ensemble.

Parameters
----------
X : array-like of shape = [n_samples, n_features]
The input samples.

Returns
-------
y : array of shape = [n_samples]
The predicted values.
"""
        # Check data
        X, = check_arrays(X)

        # Parallel loop
        n_jobs, n_estimators, starts = _partition_estimators(self)

        all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
            delayed(_parallel_predict_regression)(
                self.estimators_[starts[i]:starts[i + 1]],
                self.estimators_features_[starts[i]:starts[i + 1]],
                X)
            for i in range(n_jobs))

        # Reduce
        y_hat = sum(all_y_hat) / self.n_estimators

        return y_hat
开发者ID:orazaro,项目名称:kgml,代码行数:33,代码来源:bag.py


示例4: benchmark

def benchmark(clf, X, y, cv=None):
    X, y = check_arrays(X, y, sparse_format='csr', allow_lists=True)
    cv = check_cv(cv, X, y, classifier=is_classifier(clf))
    
    # learning_curve_ = learning_curve(clf, X_all, y_all, cv=cv)
    
    train_times = []
    test_times = []
    confusion_matrices = []
    confusion_matrix_indices = []
    coefs = []
    for train, test in cv:
        X_train, y_train = X[train], y[train]
        X_test, y_test = X[test], y[test]
        
        t0 = time()
        clf.fit(X_train, y_train)
        train_times.append(time()-t0)
        
        t0 = time()
        y_pred = clf.predict(X_test)
        test_times.append(time()-t0)
    
        confusion_matrices.append(confusion_matrix(y_test, y_pred))
        confusion_matrix_indices.append(np.array([[test[pred] for pred in true] for true in confusion_matrix_instances(y_test, y_pred)]))
    
        coefs.append(clf.coef_)
    
    return dict(
        train_times = np.array(train_times),
        test_times = np.array(test_times),
        confusion_matrices = np.array(confusion_matrices),
        confusion_matrix_indices = np.array(confusion_matrix_indices),
        coefs = np.array(coefs)
    )
开发者ID:EdwardBetts,项目名称:twitter-sentiment,代码行数:35,代码来源:evaluation.py


示例5: mean_absolute_percentage_error

def mean_absolute_percentage_error(y_true, y_pred): 
    y_true, y_pred = check_arrays(y_true, y_pred)

    ## Note: does not handle mix 1d representation
    #if _is_1d(y_true): 
    #    y_true, y_pred = _check_1d_array(y_true, y_pred)

    return round(np.mean(np.abs((y_true - y_pred) / y_true)) * 100, 2)
开发者ID:martin1,项目名称:thesis,代码行数:8,代码来源:mape.py


示例6: fit

    def fit(self, X, y):
        """Fit MLP Classifier according to X, y

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
        Training vectors, where n_samples is the number of samples
        and n_features is the number of features.

        y : array-like, shape = [n_samples] or [n_samples, n_classes]
        Target values. It determines the problem type.

        *binary*
        If y is a vector of integers with two unique values.

        *multiclass*
        If y is a vector of integers with three or more values
        or if y is a two-dimensional array of integers and there exists only
        one non-zero element per row.

        *multiclass-multioutput*
        If y is two-dimensional array of integers with two unique values
        and there exists more than one non-zero element per row.

        *continuous*
        If y is a vector of floats.

        *continuous-multioutput*
        If y is a two-dimensional array of floats.

        Returns
        -------
        self : object
        Returns self.
        """
        X, = check_arrays(X, sparse_format='dense')

        n_samples, self.input_size_ = X.shape

        y = np.atleast_1d(y)

        self.type_of_target_ = type_of_target(y)
        if self.verbose > 0:
            print("The inferred type of y is %s" % self.type_of_target_)
        if self.type_of_y != None:
            if self.type_of_y != self.type_of_target_:
                print("Passed type of y is %s, inferred type is %s"
                      % (self.type_of_y, self.type_of_target_))
                raise("derp")

        self.check_type_implemented()
        y = self._get_output(y)
        X, y = self._scale(X, y)
        self._inst_mlp()
        self._fit_mlp(X, y)
        if self.dropout and self.type_of_target_ in ['continuous', 'continuous-multioutput']:
            self._lineregress(X, y)
开发者ID:JakeMick,项目名称:graymatter,代码行数:57,代码来源:mlp.py


示例7: fit_all

    def fit_all(self, X, y, n_shop, last_obs_plan):
        # if not warmstart - clear the estimator state
        if not self.warm_start:
            self._clear_state()

        # Check input
        X, = check_arrays(X, dtype=DTYPE, sparse_format="dense")
        y = column_or_1d(y, warn=True)
        n_samples, n_features = X.shape
        self.n_features = n_features
        random_state = check_random_state(self.random_state)
        self._check_params()

        if not self._is_initialized():
            if self.verbose:
                print 'Initializing gradient boosting...'
            # init state
            self._init_state()

            # fit initial model
            if not self.fix_history:
                idx = get_truncated_shopping_indices(n_shop)
            else:
                idx = np.arange(len(n_shop))

            # init predictions by averaging over the shopping histories
            y_pred = self.init_.predict(last_obs_plan[idx])
            print 'First training accuracy:', accuracy_score(y, y_pred.argmax(axis=1))
            begin_at_stage = 0
        else:
            # add more estimators to fitted model
            # invariant: warm_start = True
            if self.n_estimators < self.estimators_.shape[0]:
                raise ValueError('n_estimators=%d must be larger or equal to '
                                 'estimators_.shape[0]=%d when '
                                 'warm_start==True'
                                 % (self.n_estimators,
                                    self.estimators_.shape[0]))
            begin_at_stage = self.estimators_.shape[0]
            y_pred = self.decision_function(X)
            self._resize_state()

        # fit the boosting stages
        n_stages = self._fit_stages(X, y, y_pred, random_state, begin_at_stage, n_shop)
        # change shape of arrays after fit (early-stopping or additional tests)
        if n_stages != self.estimators_.shape[0]:
            self.estimators_ = self.estimators_[:n_stages]
            self.train_score_ = self.train_score_[:n_stages]
            if hasattr(self, 'oob_improvement_'):
                self.oob_improvement_ = self.oob_improvement_[:n_stages]
            if hasattr(self, '_oob_score_'):
                self._oob_score_ = self._oob_score_[:n_stages]

        return self
开发者ID:brandonckelly,项目名称:allstate,代码行数:54,代码来源:boosted_truncated_history.py


示例8: fit

    def fit(self, X, y):
        self._validate()
        X, y = check_arrays(X, y, sparse_format="csc")
        n_samples, n_features = X.shape

        # discretize continuous features
        if np.issubdtype(X.dtype, float):
            X_new = X.astype(np.int)
            if np.any(X_new != X):
                raise ValueError('X could not safely be converted to integers.'
                                 ' MRMR does not support continuous values.')
            X = X_new

        if np.issubdtype(y.dtype, float):
            y_new = y.astype(np.int)
            if np.any(y_new != y):
                raise ValueError('y could not safely be converted to integers.'
                                 ' MRMR does not support continuous values.')
            y = y_new

        if self.k is None:
            k = n_features // 2
        else:
            k = self.k

        X_classes = np.array(list(set(X.reshape((n_samples * n_features,)))))
        y_classes = np.array(list(set(y.reshape((n_samples,)))))

        if len(X_classes) > self.warn_limit:
            print('Warning: X contains {} discrete values. MRMR may'
                  ' run slow'.format(len(X_classes)))
        if len(y_classes) > self.warn_limit:
            print('Warning: y contains {} discrete values. MRMR may'
                  ' run slow'.format(len(y_classes)))

        method = self.methods[self.method]
        idxs, _ = _mrmr(n_samples, n_features, y.astype(np.long),
                        X.astype(np.long), y_classes.astype(np.long),
                        X_classes.astype(np.long), y_classes.shape[0],
                        X_classes.shape[0], k, method, self.normalize)

        support_ = np.zeros(n_features, dtype=np.bool)
        ranking_ = np.ones(n_features, dtype=np.int) + k

        support_[idxs] = True
        for i, idx in enumerate(idxs, start=1):
            ranking_[idx] = i

        self.n_features_ = support_.sum()
        self.support_ = support_
        self.ranking_ = ranking_
        self.selected_ = np.argsort(self.ranking_)[:self.n_features_]

        return self
开发者ID:kemaleren,项目名称:sklmrmr,代码行数:54,代码来源:mrmr.py


示例9: precision_recall_fscore_support

def precision_recall_fscore_support(y_true, y_pred, beta=1.0, labels=None):

    y_true, y_pred = check_arrays(y_true, y_pred)
    assert(beta > 0)
    if labels is None:
        labels = unique_labels(y_true, y_pred)
    else:
        labels = np.asarray(labels, dtype=np.int)

    n_labels = labels.size
    true_pos = np.zeros(n_labels, dtype=np.double)
    false_pos = np.zeros(n_labels, dtype=np.double)
    false_neg = np.zeros(n_labels, dtype=np.double)
    support = np.zeros(n_labels, dtype=np.long)

    for i, label_i in enumerate(labels):
        true_pos[i] = np.sum(y_pred[y_true == label_i] == label_i)
        false_pos[i] = np.sum(y_pred[y_true != label_i] == label_i)
        false_neg[i] = np.sum(y_pred[y_true == label_i] != label_i)
        support[i] = np.sum(y_true == label_i)

    try:
        # oddly, we may get an "invalid" rather than a "divide" error here
        old_err_settings = np.seterr(divide='ignore', invalid='ignore')

        # precision and recall
        # Micro-averaging is used
        precision = true_pos.sum() / (true_pos.sum() + false_pos.sum())
        recall = true_pos.sum() / (true_pos.sum() + false_neg.sum())

        # print false_pos
        # print false_neg
        # print false_pos.sum()
        # print false_neg.sum()

        # # handle division by 0.0 in precision and recall
        # precision[(true_pos + false_pos) == 0.0] = 0.0
        # recall[(true_pos + false_neg) == 0.0] = 0.0

        # fbeta score
        beta2 = beta ** 2
        fscore = (1 + beta2) * (precision * recall) / (
            beta2 * precision + recall)
        # print (beta2 * precision + recall)

        # handle division by 0.0 in fscore
        if (precision + recall) == 0.0:
            fscore = 0.0
        # fscore[(precision + recall) == 0.0] = 0.0
    finally:
        np.seterr(**old_err_settings)

    return precision, recall, fscore, support
开发者ID:YuanhaoSun,项目名称:PPLearn,代码行数:53,代码来源:ml_metrics.py


示例10: test_check_arrays

def test_check_arrays():
    # check that error is raised on different length inputs
    X = [0, 1]
    Y = np.arange(3)
    assert_raises(ValueError, check_arrays, X, Y)

    # check error for sparse matrix and array
    X = sp.csc_matrix(np.arange(4))
    assert_raises(ValueError, check_arrays, X, Y)

    # check they y=None pattern
    X = [0, 1, 2]
    X_, Y_, Z_ = check_arrays(X, Y, None)
    assert_true(Z_ is None)

    # check that lists are converted
    X_, Y_ = check_arrays(X, Y)
    assert_true(isinstance(X_, np.ndarray))
    assert_true(isinstance(Y_, np.ndarray))

    # check that Y was not copied:
    assert_true(Y_ is Y)

    # check copying
    X_, Y_ = check_arrays(X, Y, copy=True)
    assert_false(Y_ is Y)

    # check forcing dtype
    X_, Y_ = check_arrays(X, Y, dtype=np.int)
    assert_equal(X_.dtype, np.int)
    assert_equal(Y_.dtype, np.int)

    X_, Y_ = check_arrays(X, Y, dtype=np.float)
    assert_equal(X_.dtype, np.float)
    assert_equal(Y_.dtype, np.float)

    # test check_ccontiguous
    Y = np.arange(6).reshape(3, 2).copy('F')
    # if we don't specify it, it is not changed
    X_, Y_ = check_arrays(X, Y)
    assert_true(Y_.flags['F_CONTIGUOUS'])
    assert_false(Y_.flags['C_CONTIGUOUS'])

    X_, Y_ = check_arrays(X, Y, check_ccontiguous=True)
    assert_true(Y_.flags['C_CONTIGUOUS'])
    assert_false(Y_.flags['F_CONTIGUOUS'])

    # check that lists are passed through if allow_lists is true
    X_, Y_ = check_arrays(X, Y, allow_lists=True)
    assert_true(isinstance(X_, list))
开发者ID:Big-Data,项目名称:scikit-learn,代码行数:50,代码来源:test_validation.py


示例11: predict_log_proba

    def predict_log_proba(self, X):
        """Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as
the log of the mean predicted class probabilities of the base
estimators in the ensemble.

Parameters
----------
X : array-like of shape = [n_samples, n_features]
The input samples.

Returns
-------
p : array of shape = [n_samples, n_classes]
The class log-probabilities of the input samples. Classes are
ordered by arithmetical order.
"""
        if hasattr(self.base_estimator_, "predict_log_proba"):
            # Check data
            X, = check_arrays(X)

            if self.n_features_ != X.shape[1]:
                raise ValueError("Number of features of the model must "
                                 "match the input. Model n_features is {0} "
                                 "and input n_features is {1} "
                                 "".format(self.n_features_, X.shape[1]))

            # Parallel loop
            n_jobs, n_estimators, starts = _partition_estimators(self)

            all_log_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
                delayed(_parallel_predict_log_proba)(
                    self.estimators_[starts[i]:starts[i + 1]],
                    self.estimators_features_[starts[i]:starts[i + 1]],
                    X,
                    self.n_classes_)
                for i in range(n_jobs))

            # Reduce
            log_proba = all_log_proba[0]

            for j in range(1, len(all_log_proba)):
                log_proba = logaddexp(log_proba, all_log_proba[j])

            log_proba -= np.log(self.n_estimators)

            return log_proba

        else:
            return np.log(self.predict_proba(X))
开发者ID:orazaro,项目名称:kgml,代码行数:51,代码来源:bag.py


示例12: fit

    def fit(self, X, winnerTakeAll,plList, y=None,):
        """Fit the model to the data X.

        Parameters
        ----------
        X : {array-like, sparse matrix} shape (n_samples, n_features)
            Training data.

        Returns
        -------
        self : BernoulliRBM
            The fitted model.
        """
        X, = check_arrays(X, sparse_format='csr', dtype=np.float)
        n_samples = X.shape[0]
        rng = check_random_state(self.random_state)

        self.components_ = np.asarray(
            rng.normal(0, 0.001, (self.n_components, X.shape[1])),
            order='fortran')
        self.intercept_hidden_ = np.zeros(self.n_components, )
        self.intercept_visible_ = np.zeros(X.shape[1], )
        self.h_samples_ = np.zeros((self.batch_size, self.n_components))

        n_batches = int(np.ceil(float(n_samples) / self.batch_size))
        batch_slices = list(self.gen_even_slices(n_batches * self.batch_size,n_batches, n_samples))
        verbose = self.verbose
        for iteration in xrange(self.n_iter):
            pl = 0.
            if verbose:
                begin = time.time()
	    
	    batch_index = 0
            for batch_slice in batch_slices:
		if(batch_index + 1 != n_batches - 1):
			#next_batch = batch_slice		
        		next_h_pos_mean_hidden = self._mean_hiddens(X[batch_index + 1])
                pl_batch = self._fit(X[batch_slice], rng,winnerTakeAll)
		if verbose:
                    pl += pl_batch.sum()
                    #self.printOutWeight()
		batch_index = batch_index + 1

            if verbose:
                pl /= n_samples
                end = time.time()
                print("Iteration %d, pseudo-likelihood = %.2f, time = %.2fs"
                      % (iteration, pl, end - begin))
                plList[iteration] = pl
	    #self.printOutWeight()
        return self
开发者ID:jiajunshen,项目名称:convRBM,代码行数:51,代码来源:scikitRBM.py


示例13: f_regression_cov

def f_regression_cov(X, y, C):
    """Univariate linear regression tests

    Quick linear model for testing the effect of a single regressor,
    sequentially for many regressors.

    This is done in 3 steps:
    1. the regressor of interest and the data are orthogonalized
    wrt constant regressors
    2. the cross correlation between data and regressors is computed
    3. it is converted to an F score then to a p-value

    Parameters
    ----------
    X : {array-like, sparse matrix}  shape = (n_samples, n_features)
        The set of regressors that will tested sequentially.

    y : array of shape(n_samples).
        The data matrix

    c : {array-like, sparse matrix}  shape = (n_samples, n_covariates)
        The set of covariates.


    Returns
    -------
    F : array, shape=(n_features,)
        F values of features.

    pval : array, shape=(n_features,)
        p-values of F-scores.
    """

    X, C, y = check_arrays(X, C, y, dtype=np.float)
    y = y.ravel()

    assert C.shape[1] < C.shape[0]
    cpinv = np.linalg.pinv(C)
    X -= np.dot(C,(np.dot(cpinv, X)))
    y -= np.dot(C,(np.dot(cpinv, y)))

    # compute the correlation
    corr = np.dot(y, X)
    corr /= np.asarray(np.sqrt(safe_sqr(X).sum(axis=0))).ravel()
    corr /= np.asarray(np.sqrt(safe_sqr(y).sum())).ravel()

    # convert to p-value
    dof = (X.shape[0] - 1 - C.shape[1]) / (1) #(df_fm / (df_rm - df_fm))
    F = corr ** 2 / (1 - corr ** 2) * dof
    pv = stats.f.sf(F, 1, dof)
    return F, pv
开发者ID:xiaofeng007,项目名称:FaST-LMM,代码行数:51,代码来源:linear_regression.py


示例14: partial_fit

    def partial_fit(self, X, y=None, weights=None):
        """Update k means estimate on a single mini-batch X.

        Parameters
        ----------
        X: array-like, shape = [n_samples, n_features]
            Coordinates of the data points to cluster.
        """

        X = check_arrays(X, sparse_format="csr", copy=False)[0]
        n_samples, n_features = X.shape
        if hasattr(self.init, '__array__'):
            self.init = np.ascontiguousarray(self.init, dtype=np.float64)

        if n_samples == 0:
            return self

        x_squared_norms = _squared_norms(X)
        self.random_state_ = check_random_state(self.random_state)
        if (not hasattr(self, 'counts_')
                or not hasattr(self, 'cluster_centers_')):
            # this is the first call partial_fit on this object:
            # initialize the cluster centers
            self.cluster_centers_ = _init_centroids(
                X, self.n_clusters, self.init,
                random_state=self.random_state_,
                x_squared_norms=x_squared_norms, init_size=self.init_size, weights=weights)

            self.initial_cluster_centers_ = self.cluster_centers_.copy()

            self.counts_ = np.zeros(self.n_clusters, dtype=np.int32)
            random_reassign = False
        else:
            # The lower the minimum count is, the more we do random
            # reassignment, however, we don't want to do random
            # reassignment too often, to allow for building up counts
            random_reassign = self.random_state_.randint(
                10 * (1 + self.counts_.min())) == 0

        _mini_batch_step(X, x_squared_norms, self.cluster_centers_,
                         self.counts_, np.zeros(0, np.double), 0,
                         random_reassign=random_reassign,
                         random_state=self.random_state_,
                         reassignment_ratio=self.reassignment_ratio,
                         verbose=self.verbose, weights=weights, sphered=self.sphered)

        if self.compute_labels:
            self.labels_, self.inertia_ = _labels_inertia(
                X, x_squared_norms, self.cluster_centers_, weights=weights)

        return self
开发者ID:mthomure,项目名称:glimpse-project,代码行数:51,代码来源:kmeans.py


示例15: _check_clf_targets

def _check_clf_targets(y_true, y_pred):
    """Check that y_true and y_pred belong to the same classification task

    This converts multiclass or binary types to a common shape, and raises a
    ValueError for a mix of multilabel and multiclass targets, a mix of
    multilabel formats, for the presence of continuous-valued or multioutput
    targets, or for targets of different lengths.

    Column vectors are squeezed to 1d.

    Parameters
    ----------
    y_true : array-like,

    y_pred : array-like

    Returns
    -------
    type_true : one of {'multilabel-indicator', 'multilabel-sequences', \
    'multiclass', 'binary'}
    The type of the true target data, as output by
    ``utils.multiclass.type_of_target``

    y_true : array or indicator matrix or sequence of sequences

    y_pred : array or indicator matrix or sequence of sequences
    """

    y_true, y_pred = check_arrays(y_true, y_pred, allow_lists=True)
    type_true = type_of_target(y_true)
    type_pred = type_of_target(y_pred)

    y_type = set([type_true, type_pred])
    if y_type == set(["binary", "multiclass"]):
        y_type = set(["multiclass"])

    if len(y_type) > 1:
        raise ValueError("Can't handle mix of {0} and {1}" "".format(type_true, type_pred))

    # We can't have more than one value on y_type => The set is no more needed
    y_type = y_type.pop()

    # No metrics support "multiclass-multioutput" format
    if y_type not in ["binary", "multiclass", "multilabel-indicator", "multilabel-sequences"]:
        raise ValueError("{0} is not supported".format(y_type))

    if y_type in ["binary", "multiclass"]:
        y_true = column_or_1d(y_true)
        y_pred = column_or_1d(y_pred)

    return y_type, y_true, y_pred
开发者ID:DjalelBBZ,项目名称:SOS14_practical_session,代码行数:51,代码来源:SOS_tools.py


示例16: fit

    def fit(self, X):
        """Fit the model to the data X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training Data
        i
        Returns
        -------
        self: convolutionRBM
              The fitted Model.
        """
        X, = check_arrays(X, sparse_format = 'csr', dtype = np.float)
        n_samples = X.shape[0]
        rng = check_random_state(self.random_state)
        
        self.components_ = np.asarray(
            rng.normal(0, 0.001, (self.n_groups,self.window_size * self.window_size)),order='fortran')
        self.intercept_hidden_ = np.zeros(self.n_groups)

        self.intercept_visible_ = 0
                        

        self.h_samples_ = np.zeros((self.batch_size, self.n_components))

        n_batches = int(np.ceil(float(n_samples)/ self.batch_size))
        batch_slices = list(self.gen_even_slices(n_batches * self.batch_size, n_batches, n_samples))
       
        verbose = self.verbose
        
        for iteration in xrange(1, self.n_iter + 1):
            reconstructError = 0
            for batch_slice in batch_slices:
                if(not self.use_theano):
                    reconstructError += self._fit(X[batch_slice], rng)
                else:
                    reconstructError += self._fit_theano(X[batch_slice],rng)

            print "step:", iteration, "reconstruct Error: ", reconstructError

            if verbose:
                end = time.time()
                print("[%s] Iteration %d, pseudo-likelihood = %.2f,"
                      " time = %.2fs"
                      % (type(self).__name__, iteration,
                         self.score_samples(X).mean(), end - begin))
                begin = end

        return self
开发者ID:jiajunshen,项目名称:convRBM,代码行数:50,代码来源:convRBM.py


示例17: _fit_transform

    def _fit_transform(self, X):
        self.nbrs_ = NearestNeighbors(self.n_neighbors,
                                      algorithm=self.neighbors_algorithm)

        random_state = check_random_state(self.random_state)
        X, = check_arrays(X, sparse_format='dense')
        self.nbrs_.fit(X)
        self.embedding_, self.reconstruction_error_ = \
            locally_linear_embedding(
                self.nbrs_, self.n_neighbors, self.n_components,
                eigen_solver=self.eigen_solver, tol=self.tol,
                max_iter=self.max_iter, method=self.method,
                hessian_tol=self.hessian_tol, modified_tol=self.modified_tol,
                random_state=random_state)
开发者ID:bernease,项目名称:Mmani,代码行数:14,代码来源:locally_linear.py


示例18: cross_validate

    def cross_validate(self, k=10):
        """Performs a k-fold cross validation of our training data.

        Args:
            k: The number of folds for cross validation.
        """
        self.scores = []

        X, y = check_arrays(self.feature_vector,
                            self.classification_vector,
                            sparse_format='csr')
        cv = cross_validation.check_cv(
            k, self.feature_vector, self.classification_vector,
            classifier=True)

        for train, test in cv:
            self.classifier1.fit(self.feature_vector[train],
                          self.classification_vector[train])
            self.classifier2.fit(self.feature_vector[train],
                          self.classification_vector[train])
            self.classifier3.fit(self.feature_vector[train],
                          self.classification_vector[train])
            classification1 = self.classifier1.predict(
                self.feature_vector[test])
            classification2 = self.classifier2.predict(
                self.feature_vector[test])
            classification3 = self.classifier3.predict(
                self.feature_vector[test])

            classification = []
            for predictions in zip(classification1, classification2,
                                   classification3):
                neutral_count = predictions.count(0)
                positive_count = predictions.count(1)
                negative_count = predictions.count(-1)
                if (neutral_count == negative_count and
                    negative_count == positive_count):
                    classification.append(predictions[0])
                elif (neutral_count > positive_count and
                    neutral_count > negative_count):
                    classification.append(0)
                elif (positive_count > neutral_count and
                    positive_count > negative_count):
                    classification.append(1)
                elif (negative_count > neutral_count and
                    negative_count > positive_count):
                    classification.append(-1)
            classification = numpy.array(classification)

            self.scores.append(self.score_func(y[test], classification))
开发者ID:AlinaKay,项目名称:sentiment-analyzer,代码行数:50,代码来源:train.py


示例19: f_regression_nosparse

def f_regression_nosparse(X, y, center=True):
    """Univariate linear regression tests

    Quick linear model for testing the effect of a single regressor,
    sequentially for many regressors.

    This is done in 3 steps:
    1. the regressor of interest and the data are orthogonalized
       with respect to constant regressors
    2. the cross correlation between data and regressors is computed
    3. it is converted to an F score then to a p-value

    Parameters
    ----------
    X : {array-like, sparse matrix}  shape = (n_samples, n_features)
        The set of regressors that will tested sequentially.

    y : array of shape(n_samples).
        The data matrix

    center : True, bool,
        If true, X and y will be centered.

    Returns
    -------
    F : array, shape=(n_features,)
        F values of features.

    pval : array, shape=(n_features,)
        p-values of F-scores.
    """
    X, y = check_arrays(X, y, dtype=np.float)
    y = y.ravel()
    if center:
        y = y - np.mean(y)
        X = X.copy('F')  # faster in fortran
        X -= X.mean(axis=0)

    # compute the correlation
    corr = np.dot(y, X)
    # XXX could use corr /= row_norms(X.T) here, but the test doesn't pass
    corr /= np.asarray(np.sqrt((X ** 2).sum(axis=0))).ravel()
    corr /= norm(y)

    # convert to p-value
    degrees_of_freedom = y.size - (2 if center else 1)
    F = corr ** 2 / (1 - corr ** 2) * degrees_of_freedom
    pv = stats.f.sf(F, 1, degrees_of_freedom)
    return F, pv
开发者ID:CandyPythonFlow,项目名称:nilearn,代码行数:49,代码来源:sklearn_f_regression_nosparse.py


示例20: transform

    def transform(self, X):
        """Compute the hidden layer activation probabilities, P(h=1|v=X).

        Parameters
        ----------
        X : {array-like, sparse matrix} shape (n_samples, n_features)
            The data to be transformed.

        Returns
        -------
        h : array, shape (n_samples, n_components)
            Latent representations of the data.
        """
        X, = check_arrays(X, sparse_format='csr', dtype=np.float)
        return self._mean_hiddens(X)
开发者ID:jiajunshen,项目名称:convRBM,代码行数:15,代码来源:convRBM.py



注:本文中的sklearn.utils.check_arrays函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python utils.check_random_state函数代码示例发布时间:2022-05-27
下一篇:
Python utils.check_array函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap