• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python extmath.safe_sparse_dot函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.utils.extmath.safe_sparse_dot函数的典型用法代码示例。如果您正苦于以下问题:Python safe_sparse_dot函数的具体用法?Python safe_sparse_dot怎么用?Python safe_sparse_dot使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了safe_sparse_dot函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: compute

def compute(function, x, A, b, args, coordinate=None):
  L2 = args["L2"]
   
  if function == "loss":
    """Compute the square error."""
    reg = 0.5 * L2 * np.sum(x ** 2)

    if "b_pred" not in args:
      b_pred = safe_sparse_dot(A, x)
    else:
      b_pred = args["b_pred"]

    return ((b - b_pred) ** 2).sum() / 2  + reg

  elif function == "gradient":
    if "b_pred" not in args:
      b_pred = safe_sparse_dot(A, x)
    else:
      b_pred = args["b_pred"]
    
    residual = b_pred - b

    if coordinate is None:
      grad = safe_sparse_dot(residual, A)
      grad += L2 * x
    else:
      grad = safe_sparse_dot(residual, A[:, coordinate])
      grad += (L2 *  x[coordinate])

    return grad

  elif function == "lipschitz":
    lipschitz_values = np.sum(A ** 2, axis=0) + L2

    return lipschitz_values
开发者ID:IssamLaradji,项目名称:ICML2015_GaussSouthwellCoordinateDescent,代码行数:35,代码来源:least_squares.py


示例2: _decision_scores

    def _decision_scores(self, X):
        """Predict using the ELM model

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            The input data.

        Returns
        -------
        y_pred : array-like, shape (n_samples,) or (n_samples, n_outputs)
            The predicted values.
        """
        X = check_array(X, accept_sparse=['csr', 'csc', 'coo'])

        if self.batch_size is None:
            hidden_activations = self._compute_hidden_activations(X)
            y_pred = safe_sparse_dot(hidden_activations, self.coef_output_)
        else:
            n_samples = X.shape[0]
            batches = gen_batches(n_samples, self.batch_size)

            y_pred = np.zeros((n_samples, self.n_outputs_))
            for batch in batches:
                h_batch = self._compute_hidden_activations(X[batch])
                y_pred[batch] = safe_sparse_dot(h_batch, self.coef_output_)

        return y_pred
开发者ID:IssamLaradji,项目名称:extreme-learning-machines,代码行数:28,代码来源:extreme_learning_machines.py


示例3: _bilinear_cd

def _bilinear_cd(U, V, X_left, X_right, y, alpha):
    n_samples, n_features_left = X_left.shape
    n_components = V.shape[1]

    XrV = safe_sparse_dot(X_right, V)

    viol = 0

    for j in range(n_features_left):
        for s in range(n_components):

            XlU = safe_sparse_dot(X_left, U)
            y_pred = np.sum(XlU * XrV, axis=1)

            # grad_loss = loss.dloss(y_pred, y)
            grad_loss = y_pred - y

            grad = np.dot(grad_loss * X_left[:, j], XrV[:, s])
            # grad /= n_samples
            grad += alpha * U[j, s]

            inv_step_size = np.dot(X_left[:, j] ** 2, XrV[:, s] ** 2)
            # inv_step_size /= np.sqrt(n_samples)
            inv_step_size += alpha

            update = grad / inv_step_size
            viol += np.abs(update)
            U[j, s] -= update

    XlU = safe_sparse_dot(X_left, U)
    y_pred = np.sum(XlU * XrV, axis=1)
    lv = 0.5 * np.sum((y_pred - y) ** 2)
    lv += 0.5 * alpha * (np.sum(U ** 2) + np.sum(V ** 2))

    return viol, lv
开发者ID:vene,项目名称:bilearn,代码行数:35,代码来源:test_cd.py


示例4: _svd

    def _svd(self, array, n_components, n_discard):
        """Returns first `n_components` left and right singular
        vectors u and v, discarding the first `n_discard`.

        """
        if self.svd_method == "randomized":
            kwargs = {}
            if self.n_svd_vecs is not None:
                kwargs["n_oversamples"] = self.n_svd_vecs
            u, _, vt = randomized_svd(array, n_components, random_state=self.random_state, **kwargs)

        elif self.svd_method == "arpack":
            u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs)
            if np.any(np.isnan(vt)):
                # some eigenvalues of A * A.T are negative, causing
                # sqrt() to be np.nan. This causes some vectors in vt
                # to be np.nan.
                _, v = eigsh(safe_sparse_dot(array.T, array), ncv=self.n_svd_vecs)
                vt = v.T
            if np.any(np.isnan(u)):
                _, u = eigsh(safe_sparse_dot(array, array.T), ncv=self.n_svd_vecs)

        assert_all_finite(u)
        assert_all_finite(vt)
        u = u[:, n_discard:]
        vt = vt[n_discard:]
        return u, vt.T
开发者ID:VirgileFritsch,项目名称:scikit-learn,代码行数:27,代码来源:spectral.py


示例5: _backprop

    def _backprop(self, X, y, n_samples, a_hidden, a_output, delta_o):
        """Computes the MLP cost  function
        and its corresponding derivatives with respect to the
        different parameters given in the initialization.

        Parameters
        ----------
        theta : array-like, shape (size(W1) * size(W2) * size(b1) * size(b2))
                    A vector comprising the  flattened weights :
                    "W1, W2, b1, b2"

        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Training data, where n_samples in the number of samples
            and n_features is the number of features.

        y : numpy array of shape (n_samples)
            Subset of the target values.

        n_samples : int
            Number of samples

        Returns
        -------
        cost : float
        grad : array-like, shape (size(W1) * size(W2) * size(b1) * size(b2))
        """
        # Forward propagate
        a_hidden[:] = self.activation_func(safe_sparse_dot(X,
                                                           self.coef_hidden_) +
                                           self.intercept_hidden_)

        a_output[:] = self.output_func(safe_sparse_dot(a_hidden,
                                                       self.coef_output_) +
                                       self.intercept_output_)

        # get cost
        cost = self.loss_functions[self.loss](y, a_output)
        # add regularization term to cost
        cost += (0.5 * self.alpha) * (np.sum(self.coef_hidden_ ** 2) +
                                      np.sum(self.coef_output_ ** 2)) \
            / n_samples

        # backward propagate
        diff = y - a_output
        delta_o[:] = -diff
        delta_h = np.dot(delta_o, self.coef_output_.T) *\
            self.derivative_func(a_hidden)

        # get regularized gradient
        W1grad = (safe_sparse_dot(X.T,
                                  delta_h) + (self.alpha *
                                              self.coef_hidden_)) / n_samples
        W2grad = (safe_sparse_dot(a_hidden.T,
                                  delta_o) + (self.alpha *
                                              self.coef_output_)) / n_samples
        b1grad = np.mean(delta_h, 0)
        b2grad = np.mean(delta_o, 0)

        return cost, W1grad, W2grad, b1grad, b2grad
开发者ID:ddofer,项目名称:NeuralNetworks,代码行数:59,代码来源:multilayer_perceptron.py


示例6: complement_joint_log_likelihood

    def complement_joint_log_likelihood(self, X, i):
        """Calculate the posterior log probability of the samples X
        1 - (|c| - 1) * ((P(¬c)ΠP(w_i|¬c)) / (ΣP(¬c)ΠP(w_i|¬c)))"""
        check_is_fitted(self, "classes_")

        X = check_array(X, accept_sparse='csr')
        return (1 - (len(self.classes_) - 1)) * np.array(safe_sparse_dot(X, self.complement_feature_log_prob_.T) -
                        np.sum(self.class_log_prior_[i] + safe_sparse_dot(X, self.complement_feature_log_prob_.T)))
开发者ID:ikegami-yukino,项目名称:misc,代码行数:8,代码来源:selective_nb.py


示例7: _neg_free_energy

 def _neg_free_energy(self,V):
     ''' Compute -1 * free energy  (i.e. log p(V) * Z, where Z - normalizer) '''
     # sum_j = 1:M b_j * Vj
     fe  = safe_sparse_dot(V,self.bias_visible_,dense_output = True)
     # sum_j=1:M  log( 1 + exp(sum_i=1:N Wij * Vj))
     fe += np.log( 1 + np.exp( self.bias_hidden_ + 
             safe_sparse_dot(V,self.weights_.T))).sum(1)
     return fe
开发者ID:AmazaspShumik,项目名称:sklearn-bayes,代码行数:8,代码来源:rbm.py


示例8: transform

 def transform(self, X):
     # compute hidden layer activation
     if hasattr(self, 'weights_u_') and hasattr(self, 'weights_v_'):
         projected = safe_sparse_dot(X, self.weights_u_, dense_output=True)
         projected = safe_sparse_dot(projected, self.weights_v_)
     else:
         projected = safe_sparse_dot(X, self.weights_, dense_output=True)
     return self._activate(projected + self.biases_)
开发者ID:ddofer,项目名称:Kaggle-HUJI-ML,代码行数:8,代码来源:ELM.py


示例9: compute

def compute(function, x, A, b, args, coordinate=None):
  L1 = args["L1"]
   
  if function == "loss":
    reg = L1 * np.sum(np.abs(x)) 

    if "b_pred" not in args:
      b_pred = safe_sparse_dot(A, x)
    else:
      b_pred = args["b_pred"]

    loss = np.sum((b - b_pred) ** 2) / 2 + reg

    return loss

  elif function == "gradient":
    if "b_pred" not in args:
      b_pred = safe_sparse_dot(A, x)
    else:
      b_pred = args["b_pred"]
    
    loss = b_pred - b

    if coordinate is None:
      grad = safe_sparse_dot(A.T, loss)
    else:
      grad = safe_sparse_dot(A[:, coordinate], loss)

    return grad

  elif function == "proximal_step":
    L = args["prox_lipschitz"]
    g_func = args["g_func"]
    L1 = args["L1"]

    g = g_func(x, A, b, args, coordinate)

    if coordinate is None:

      x_half = x - g / L

      # soft thresholding
      x = np.sign(x_half) * np.maximum(0, np.abs(x_half) - L1 / L)

    else:
      L = args["prox_lipschitz"][coordinate]
      x_half = x[coordinate] - g / L

      # soft thresholding
      x[coordinate] = np.sign(x_half) * np.maximum(0, np.abs(x_half) - L1 / L)

    return x

  elif function == "lipschitz":
    lipschitz_values = np.sum(A ** 2, axis=0)

    return lipschitz_values
开发者ID:IssamLaradji,项目名称:ICML2015_GaussSouthwellCoordinateDescent,代码行数:57,代码来源:lasso.py


示例10: _joint_log_likelihood

    def _joint_log_likelihood(self, X, i):
        """Calculate the posterior log probability of the samples X
        P(c) * Π P(w_i|c) / ΣP(c) * Π P(w_i|c)"""
        check_is_fitted(self, "classes_")

        X = check_array(X, accept_sparse='csr')
        numerator = self.class_log_prior_[i] + safe_sparse_dot(X, self.feature_log_prob_.T)
        denominator = np.sum(self.class_log_prior_[i] + safe_sparse_dot(X, self.feature_log_prob_.T))
        return np.array(numerator - denominator)
开发者ID:ikegami-yukino,项目名称:misc,代码行数:9,代码来源:selective_nb.py


示例11: compute

def compute(function, x, A, b, args, coordinate=None):
  np.testing.assert_equal(np.unique(b), np.array([-1, 1]))
  L2 = args["L2"]
   
  if function == "loss":
    reg = 0.5 * L2 * np.sum(x ** 2) 

    if "b_pred" not in args:
      b_pred = safe_sparse_dot(A, x)
    else:
      b_pred = args["b_pred"]

    loss = np.sum(np.log(1 + np.exp(- b*b_pred))) + reg

    return loss

  elif function == "gradient":
    if "b_pred" not in args:
      b_pred = safe_sparse_dot(A, x)
    else:
      b_pred = args["b_pred"]

    residual = - b / (1. + np.exp(b * b_pred))

    if coordinate is None:
      grad = safe_sparse_dot(A.T, residual)
      grad += L2 * x
    else:
      grad = safe_sparse_dot(A[:, coordinate].T, residual)
      grad += (L2 *  x[coordinate])

    return grad

  elif function == "hessian":
    if "b_pred" not in args:
      b_pred = safe_sparse_dot(A, x)
    else:
      b_pred = args["b_pred"]

    sig = 1. / (1. + np.exp(- b * b_pred))

    if coordinate is None:
      hessian = A.T.dot(np.diag(sig * (1-sig)).dot(A))
      hessian += L2
    else:
      hessian = A[:, coordinate].T.dot(np.diag(sig * \
                  (1-sig)).dot(A[:, coordinate]))
      hessian += L2

    return hessian


  elif function == "lipschitz":
    lipschitz_values = 0.25 * np.sum(A ** 2, axis=0) + L2

    return lipschitz_values
开发者ID:IssamLaradji,项目名称:ICML2015_GaussSouthwellCoordinateDescent,代码行数:56,代码来源:logistic.py


示例12: _emission_log_probs_params

 def _emission_log_probs_params(self, emission_params, X):
     '''
     Computes log of emission probabilities
     '''
     success = emission_params['success_prob']
     fail    = emission_params['fail_prob']
     log_total   = psi(success + fail)
     log_success = psi(success) -  log_total
     log_fail    = psi(fail)    -  log_total
     return safe_sparse_dot(X,log_success.T) + safe_sparse_dot(np.ones(X.shape) - X, log_fail.T)
开发者ID:Ferrine,项目名称:sklearn-bayes,代码行数:10,代码来源:hmm.py


示例13: fit

    def fit(self, X, y):
        """
        Learn the idf vector (global term weights)
        :param X: sparse matrix, [n_samples, n_features]
                  X must be a matrix of term counts
        :param y: class_label, [n_samples]
        :return: [n_class, n_features]
        """
        if self.use_idf:
            labelbin = LabelBinarizer()
            # 计算样本属于哪个类别 [n_samples, n_classes]
            Y = labelbin.fit_transform(y)
            self.classes_ = labelbin.classes_

            # 计算类别下的文档数 [n_classes]
            class_count_ = np.sum(Y, axis=0)
            class_size = class_count_.shape[0]

            # 计算每个特征词属于每个类别的样本数 [n_classes, n_features]
            class_df_ = vectorize.class_df(X, Y)

            # 计算类别下的词汇数 [n_classes]
            self.class_freq_ = np.sum(safe_sparse_dot(Y.T, X), axis=1)

            # 计算出现特征词的类别数 [n_features]
            feature_count_ = np.sum(vectorize.tobool(class_df_), axis=0)

            # 如果特征词所在的类别不确定或不知道时,用这个特征词出现的总样本数来代替
            unknow_class_count_ = np.array([np.sum(class_count_, axis=0)])
            class_count_ = np.concatenate((class_count_, unknow_class_count_))

            unknow_class_df_ = np.sum(class_df_, axis=0).reshape(1, -1)
            class_df_ = np.concatenate((class_df_, unknow_class_df_), axis=0)

            unknow_class_freq_ = np.array([np.sum(self.class_freq_, axis=0)])
            self.class_freq_ = np.concatenate((self.class_freq_, unknow_class_freq_))

            self.classes_ = np.concatenate((self.classes_, np.array(["unknow"])), axis=0)

            # smooth class_count_, class_df_, feature_count_
            class_count_ += int(self.smooth_idf)
            class_df_ += int(self.smooth_idf)
            feature_count_ += int(self.smooth_idf)

            _, n_features = X.shape

            # [n_classes, n_features]
            first_part = np.log(np.divide(class_count_.reshape(-1, 1), class_df_)) + 1.0
            # [n_features]
            second_part = np.log(class_size / feature_count_) + 1.0
            second_part_diag = sp.spdiags(second_part, diags=0, m=n_features, n=n_features)

            self._idf = safe_sparse_dot(first_part, second_part_diag)

        return self
开发者ID:zqlhuanying,项目名称:Image_Emotion,代码行数:55,代码来源:another_improve_tf_idf.py


示例14: predict

    def predict(self, X_left, X_right):
        y_pred = _bilinear_forward(self.U_, self.V_, X_left, X_right)

        if self.fit_linear:
            y_pred += safe_sparse_dot(X_left, self.w_left_)
            y_pred += safe_sparse_dot(X_right, self.w_right_)

        if self.fit_diag:
            y_pred += safe_sparse_dot(safe_sparse_mul(X_left, X_right),
                                      self.diag_)

        return y_pred
开发者ID:vene,项目名称:bilearn,代码行数:12,代码来源:sg_theano.py


示例15: add_fit

    def add_fit(self,X):
        n_samples = X.shape[0]

        # old
        first = safe_sparse_dot(self.hidden_activations_.T, self.hidden_activations_)
        M = pinv2(first+1*np.identity(first.shape[0]))
        beta = self.coef_output_
        # new
        H = self._get_hidden_activations(X)
        # update
        first = pinv2(1*np.identity(n_samples)+safe_sparse_dot(safe_sparse_dot(H,M),H.T))
        second = safe_sparse_dot(safe_sparse_dot(safe_sparse_dot(safe_sparse_dot(M,H.T),first),H),M)
        M = M - second
        self.coef_output_ = beta + safe_sparse_dot(safe_sparse_dot(M,H.T),(X - safe_sparse_dot(H,beta)))
开发者ID:YISION,项目名称:yision.github.io,代码行数:14,代码来源:elm_autoencoder.py


示例16: _free_energy

    def _free_energy(self, v):
        """Computes the free energy F(v) = - log sum_h exp(-E(v,h)).

        v : array-like, shape (n_samples, n_features)
            Values of the visible layer.

        Returns
        -------
        free_energy : array-like, shape (n_samples,)
            The value of the free energy.
        """
        return (- safe_sparse_dot(v, self.intercept_visible_)
                - np.logaddexp(0, safe_sparse_dot(v, self.components_.T)
                               + self.intercept_hidden_).sum(axis=1))
开发者ID:CalculatedContent,项目名称:char-rbm,代码行数:14,代码来源:RBM.py


示例17: instance_proba

    def instance_proba(self, X):
        """Calculates the probability of each instance in X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]

        Returns
        -------
        array-like, shape = [n_samples]
        """
        feat_prob = safe_sparse_dot(np.exp(self.class_log_prior_),
                                    np.exp(self.feature_log_prob_)).T
        instance_log_prob = safe_sparse_dot(X, np.log(feat_prob))
        return np.exp(instance_log_prob)
开发者ID:lucianosilvi,项目名称:mit0110_tesis,代码行数:15,代码来源:featmultinomial.py


示例18: least_square_gradient

def least_square_gradient(X, y, theta, alpha=0, y_pred=None, coordinate=None):
    """Compute the gradient for each feature."""
    if y_pred is None:
      y_pred = safe_sparse_dot(X, theta)
    
    loss = y_pred - y

    if coordinate is None:
      grad = safe_sparse_dot(X.T, loss)
      grad += alpha * theta
    else:
      grad = safe_sparse_dot(X[:, coordinate], loss)
      grad += (alpha *  theta[coordinate])

    return grad
开发者ID:Lolluminati,项目名称:ICML2015_GaussSouthwellCoordinateDescent,代码行数:15,代码来源:coordinate_descent.py


示例19: test_epoch

def test_epoch():
    U = rng.randn(*true_U.shape)
    U2 = U.copy()

    viol, lv = _bilinear_cd(U, true_V, X_left, X_right, y, 1.0)

    dataset = get_dataset(X_left, 'fortran')

    # precomputing for cython
    y_pred = _bilinear_forward(U2, true_V, X_left, X_right)
    XrV = safe_sparse_dot(X_right, true_V)
    VtGsq = safe_sparse_dot(XrV.T ** 2, X_left ** 2)
    v2 = _cd_bilinear_epoch(U2, dataset, XrV, y, y_pred, VtGsq, 1.0)

    assert_almost_equal(viol, v2)
    assert_array_almost_equal(U, U2)
开发者ID:vene,项目名称:bilearn,代码行数:16,代码来源:test_cd.py


示例20: _joint_log_likelihood

 def _joint_log_likelihood(self, X):
     """Calculate the posterior log probability of the samples X"""
     X = atleast2d_or_csr(X)
     neg_prob = np.log(1 - np.exp(self.feature_log_prob_))
     jll = safe_sparse_dot(X, (self.feature_log_prob_ - neg_prob).T)
     jll += self.class_log_prior_ + neg_prob.sum(axis=1)
     return jll
开发者ID:katyasosa,项目名称:TSA,代码行数:7,代码来源:bayesian_naive_bayes.py



注:本文中的sklearn.utils.extmath.safe_sparse_dot函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python extmath.squared_norm函数代码示例发布时间:2022-05-27
下一篇:
Python extmath.row_norms函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap