本文整理汇总了Python中sklearn.utils.extmath.weighted_mode函数的典型用法代码示例。如果您正苦于以下问题:Python weighted_mode函数的具体用法?Python weighted_mode怎么用?Python weighted_mode使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了weighted_mode函数的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: predict
def predict(self, X):
"""Predict the class labels for the provided data
Parameters
----------
X: array
A 2-D array representing the test points.
Returns
-------
labels: array
List of class labels (one for each data sample).
"""
X = np.atleast_2d(X)
neigh_dist, neigh_ind = self.kneighbors(X)
pred_labels = self._y[neigh_ind]
weights = _get_weights(neigh_dist, self.weights)
if weights is None:
mode, _ = smart_mode(pred_labels, axis=1)
else:
mode, _ = weighted_mode(pred_labels, weights, axis=1)
return mode.flatten().astype(np.int)
开发者ID:dpmcsuss,项目名称:dtmrigraph,代码行数:26,代码来源:fastaprnn.py
示例2: test_uniform_weights
def test_uniform_weights():
# with uniform weights, results should be identical to stats.mode
x = np.random.randint(10, size=(10, 5))
weights = np.ones(x.shape)
for axis in (None, 0, 1):
mode, score = stats.mode(x, axis)
mode2, score2 = weighted_mode(x, weights, axis)
assert np.all(mode == mode2)
assert np.all(score == score2)
开发者ID:Scott-Alex,项目名称:scikit-learn,代码行数:11,代码来源:test_weighted_mode.py
示例3: test_uniform_weights
def test_uniform_weights():
# with uniform weights, results should be identical to stats.mode
rng = np.random.RandomState(0)
x = rng.randint(10, size=(10, 5))
weights = np.ones(x.shape)
for axis in (None, 0, 1):
mode, score = stats.mode(x, axis)
mode2, score2 = weighted_mode(x, weights, axis)
assert_array_equal(mode, mode2)
assert_array_equal(score, score2)
开发者ID:BasilBeirouti,项目名称:scikit-learn,代码行数:12,代码来源:test_extmath.py
示例4: test_random_weights
def test_random_weights():
# set this up so that each row should have a weighted mode of 6,
# with a score that is easily reproduced
mode_result = 6
x = np.random.randint(mode_result, size=(100, 10))
w = np.random.random(x.shape)
x[:, :5] = mode_result
w[:, :5] += 1
mode, score = weighted_mode(x, w, axis=1)
assert np.all(mode == mode_result)
assert np.all(score.ravel() == w[:, :5].sum(1))
开发者ID:Scott-Alex,项目名称:scikit-learn,代码行数:15,代码来源:test_weighted_mode.py
示例5: test_random_weights
def test_random_weights():
# set this up so that each row should have a weighted mode of 6,
# with a score that is easily reproduced
mode_result = 6
rng = np.random.RandomState(0)
x = rng.randint(mode_result, size=(100, 10))
w = rng.random_sample(x.shape)
x[:, :5] = mode_result
w[:, :5] += 1
mode, score = weighted_mode(x, w, axis=1)
np.testing.assert_array_equal(mode, mode_result)
np.testing.assert_array_almost_equal(score.ravel(), w[:, :5].sum(1))
开发者ID:93sam,项目名称:scikit-learn,代码行数:16,代码来源:test_extmath.py
示例6: predict
def predict(self, X, idx=None):
neigh_dist, neigh_ind = self.kneighbors(X,idx)
pred_labels = self._y[neigh_ind]
weights = _get_weights(neigh_dist, self.weights)
if weights is None:
mode, _ = stats.mode(pred_labels, axis=1)
else:
# Randomly permute the neighbors to tie-break randomly if necessary
perm = np.random.permutation(n_neighbors)
ind = ind[perm]
mode, _ = weighted_mode(pred_labels,weights,axis)
return mode.flatten().astype(np.int)
开发者ID:dpmcsuss,项目名称:stfpSim,代码行数:16,代码来源:fastaprnn.py
示例7: predict
def predict(self, X):
"""Predict the class labels for the provided data
Parameters
----------
X : array-like, shape (n_query, n_features), \
or (n_query, n_indexed) if metric == 'precomputed'
Test samples.
Returns
-------
y : array of shape [n_samples]
Class labels for each data sample.
"""
X = check_array(X, accept_sparse="csr")
n_samples = X.shape[0]
neigh_dist, neigh_ind = self.radius_neighbors(X)
inliers = [i for i, nind in enumerate(neigh_ind) if len(nind) != 0]
outliers = [i for i, nind in enumerate(neigh_ind) if len(nind) == 0]
classes_ = self.classes_
_y = self._y
if not self.outputs_2d_:
_y = self._y.reshape((-1, 1))
classes_ = [self.classes_]
n_outputs = len(classes_)
if self.outlier_function is None and outliers:
raise ValueError(
"No neighbors found for test samples %r, "
"you can try using larger radius, "
"give a function for outliers, "
"or consider removing them from your dataset." % outliers
)
if type(neigh_ind) is int:
neigh_ind = [neigh_ind]
weights = self.weight_function(neigh_dist=neigh_dist, neigh_ind=neigh_ind, target_space=self.target_space)
y_pred = np.empty((n_samples, n_outputs), dtype=classes_[0].dtype)
for k, classes_k in enumerate(classes_):
pred_labels = np.array([_y[ind, k] for ind in neigh_ind], dtype=object)
if weights is None:
mode = np.array([stats.mode(pl)[0] for pl in pred_labels[inliers]], dtype=np.int)
else:
mode = np.array(
[weighted_mode(pl, w)[0] for (pl, w) in zip(pred_labels[inliers], weights)], dtype=np.int
)
mode = mode.ravel()
y_pred[inliers, k] = classes_k.take(mode)
if outliers:
for outlier in outliers:
y_pred[outlier, 0] = self.outlier_function.predict(X[outlier])
if not self.outputs_2d_:
y_pred = y_pred.ravel()
return y_pred
开发者ID:emma-d-cotter,项目名称:ARTEMIS,代码行数:61,代码来源:classification.py
注:本文中的sklearn.utils.extmath.weighted_mode函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论