• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python testing.assert_warns函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.utils.testing.assert_warns函数的典型用法代码示例。如果您正苦于以下问题:Python assert_warns函数的具体用法?Python assert_warns怎么用?Python assert_warns使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了assert_warns函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_grid_search_score_method

def test_grid_search_score_method():
    X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2,
                               random_state=0)
    clf = LinearSVC(random_state=0)
    grid = {'C': [.1]}

    search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y)
    search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y)
    search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid,
                                              scoring='roc_auc').fit(X, y)
    search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y)

    # Check warning only occurs in situation where behavior changed:
    # estimator requires score method to compete with scoring parameter
    score_no_scoring = assert_no_warnings(search_no_scoring.score, X, y)
    score_accuracy = assert_warns(ChangedBehaviorWarning,
                                  search_accuracy.score, X, y)
    score_no_score_auc = assert_no_warnings(search_no_score_method_auc.score,
                                            X, y)
    score_auc = assert_warns(ChangedBehaviorWarning,
                             search_auc.score, X, y)
    # ensure the test is sane
    assert_true(score_auc < 1.0)
    assert_true(score_accuracy < 1.0)
    assert_not_equal(score_auc, score_accuracy)

    assert_almost_equal(score_accuracy, score_no_scoring)
    assert_almost_equal(score_auc, score_no_score_auc)
开发者ID:YinYihang,项目名称:scikit-learn,代码行数:28,代码来源:test_grid_search.py


示例2: test_convergence_fail

def test_convergence_fail():
    d = load_linnerud()
    X = d.data
    Y = d.target
    pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1],
                                     max_iter=2, tol=1e-10)
    assert_warns(ConvergenceWarning, pls_bynipals.fit, X, Y)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:7,代码来源:test_pls.py


示例3: test_identical_regressors

def test_identical_regressors():
    newX = X.copy()
    newX[:, 1] = newX[:, 0]
    gamma = np.zeros(n_features)
    gamma[0] = gamma[1] = 1.
    newy = np.dot(newX, gamma)
    assert_warns(RuntimeWarning, orthogonal_mp, newX, newy, 2)
开发者ID:1992huanghai,项目名称:scikit-learn,代码行数:7,代码来源:test_omp.py


示例4: test_prf_average_compat

def test_prf_average_compat():
    # Ensure warning if f1_score et al.'s average is implicit for multiclass
    y_true = [1, 2, 3, 3]
    y_pred = [1, 2, 3, 1]
    y_true_bin = [0, 1, 1]
    y_pred_bin = [0, 1, 0]

    for metric in [precision_score, recall_score, f1_score,
                   partial(fbeta_score, beta=2)]:
        score = assert_warns(DeprecationWarning, metric, y_true, y_pred)
        score_weighted = assert_no_warnings(metric, y_true, y_pred,
                                            average='weighted')
        assert_equal(score, score_weighted,
                     'average does not act like "weighted" by default')

        # check binary passes without warning
        assert_no_warnings(metric, y_true_bin, y_pred_bin)

        # but binary with pos_label=None should behave like multiclass
        score = assert_warns(DeprecationWarning, metric,
                             y_true_bin, y_pred_bin, pos_label=None)
        score_weighted = assert_no_warnings(metric, y_true_bin, y_pred_bin,
                                            pos_label=None, average='weighted')
        assert_equal(score, score_weighted,
                     'average does not act like "weighted" by default with '
                     'binary data and pos_label=None')
开发者ID:1TTT9,项目名称:scikit-learn,代码行数:26,代码来源:test_classification.py


示例5: test_oob_score_regression

def test_oob_score_regression():
    # Check that oob prediction is a good estimation of the generalization
    # error.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data,
                                                        boston.target,
                                                        random_state=rng)

    clf = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                           n_estimators=50,
                           bootstrap=True,
                           oob_score=True,
                           random_state=rng).fit(X_train, y_train)

    test_score = clf.score(X_test, y_test)

    assert_less(abs(test_score - clf.oob_score_), 0.1)

    # Test with few estimators
    assert_warns(UserWarning,
                 BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                                  n_estimators=1,
                                  bootstrap=True,
                                  oob_score=True,
                                  random_state=rng).fit,
                 X_train,
                 y_train)
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:27,代码来源:test_bagging.py


示例6: test_warning_n_components_greater_than_n_features

def test_warning_n_components_greater_than_n_features():
    n_features = 20
    data, _ = make_sparse_random_data(5, n_features, int(n_features / 4))

    for RandomProjection in all_RandomProjection:
        assert_warns(DataDimensionalityWarning,
                     RandomProjection(n_components=n_features + 1).fit, data)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:7,代码来源:test_random_projection.py


示例7: test_label_binarizer_multilabel

def test_label_binarizer_multilabel():
    lb = LabelBinarizer()

    # test input as lists of tuples
    inp = [(2, 3), (1,), (1, 2)]
    indicator_mat = np.array([[0, 1, 1],
                              [1, 0, 0],
                              [1, 1, 0]])
    got = assert_warns(DeprecationWarning, lb.fit_transform, inp)
    assert_true(lb.multilabel_)
    assert_array_equal(indicator_mat, got)
    assert_equal(lb.inverse_transform(got), inp)

    # test input as label indicator matrix
    lb.fit(indicator_mat)
    assert_array_equal(indicator_mat,
                       lb.inverse_transform(indicator_mat))

    # regression test for the two-class multilabel case
    lb = LabelBinarizer()
    inp = [[1, 0], [0], [1], [0, 1]]
    expected = np.array([[1, 1],
                         [1, 0],
                         [0, 1],
                         [1, 1]])
    got = assert_warns(DeprecationWarning, lb.fit_transform, inp)
    assert_true(lb.multilabel_)
    assert_array_equal(expected, got)
    assert_equal([set(x) for x in lb.inverse_transform(got)],
                 [set(x) for x in inp])
开发者ID:93sam,项目名称:scikit-learn,代码行数:30,代码来源:test_label.py


示例8: test_grid_search_failing_classifier

def test_grid_search_failing_classifier():
    # GridSearchCV with on_error != 'raise'
    # Ensures that a warning is raised and score reset where appropriate.

    X, y = make_classification(n_samples=20, n_features=10, random_state=0)

    clf = FailingClassifier()

    # refit=False because we only want to check that errors caused by fits
    # to individual folds will be caught and warnings raised instead. If
    # refit was done, then an exception would be raised on refit and not
    # caught by grid_search (expected behavior), and this would cause an
    # error in this test.
    gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy',
                      refit=False, error_score=0.0)
    assert_warns(FitFailedWarning, gs.fit, X, y)
    n_candidates = len(gs.cv_results_['params'])
    # Ensure that grid scores were set to zero as required for those fits
    # that are expected to fail.
    get_cand_scores = lambda i: np.array(list(
        gs.cv_results_['split%d_test_score' % s][i]
        for s in range(gs.n_splits_)))
    assert all((np.all(get_cand_scores(cand_i) == 0.0)
                for cand_i in range(n_candidates)
                if gs.cv_results_['param_parameter'][cand_i] ==
                FailingClassifier.FAILING_PARAMETER))

    gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy',
                      refit=False, error_score=float('nan'))
    assert_warns(FitFailedWarning, gs.fit, X, y)
    n_candidates = len(gs.cv_results_['params'])
    assert all(np.all(np.isnan(get_cand_scores(cand_i)))
               for cand_i in range(n_candidates)
               if gs.cv_results_['param_parameter'][cand_i] ==
               FailingClassifier.FAILING_PARAMETER)
开发者ID:YinongLong,项目名称:scikit-learn,代码行数:35,代码来源:test_search.py


示例9: test_unique_labels

def test_unique_labels():
    # Empty iterable
    assert_raises(ValueError, unique_labels)

    # Multiclass problem
    assert_array_equal(unique_labels(xrange(10)), np.arange(10))
    assert_array_equal(unique_labels(np.arange(10)), np.arange(10))
    assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4]))

    # Multilabels
    assert_array_equal(
        assert_warns(DeprecationWarning, unique_labels, [(0, 1, 2), (0,), tuple(), (2, 1)]), np.arange(3)
    )
    assert_array_equal(assert_warns(DeprecationWarning, unique_labels, [[0, 1, 2], [0], list(), [2, 1]]), np.arange(3))

    assert_array_equal(unique_labels(np.array([[0, 0, 1], [1, 0, 1], [0, 0, 0]])), np.arange(3))

    assert_array_equal(unique_labels(np.array([[0, 0, 1], [0, 0, 0]])), np.arange(3))

    # Several arrays passed
    assert_array_equal(unique_labels([4, 0, 2], xrange(5)), np.arange(5))
    assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)), np.arange(3))

    # Border line case with binary indicator matrix
    assert_raises(ValueError, unique_labels, [4, 0, 2], np.ones((5, 5)))
    assert_raises(ValueError, unique_labels, np.ones((5, 4)), np.ones((5, 5)))
    assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))), np.arange(5))

    # Some tests with strings input
    assert_array_equal(unique_labels(["a", "b", "c"], ["d"]), ["a", "b", "c", "d"])

    assert_array_equal(
        assert_warns(DeprecationWarning, unique_labels, [["a", "b"], ["c"]], [["d"]]), ["a", "b", "c", "d"]
    )
开发者ID:93sam,项目名称:scikit-learn,代码行数:34,代码来源:test_multiclass.py


示例10: test_compute_class_weight_auto_negative

def test_compute_class_weight_auto_negative():
    # Test compute_class_weight when labels are negative
    # Test with balanced class labels.
    classes = np.array([-2, -1, 0])
    y = np.asarray([-1, -1, 0, 0, -2, -2])
    cw = assert_warns(DeprecationWarning, compute_class_weight, "auto",
                      classes, y)
    assert_almost_equal(cw.sum(), classes.shape)
    assert_equal(len(cw), len(classes))
    assert_array_almost_equal(cw, np.array([1., 1., 1.]))

    cw = compute_class_weight("balanced", classes, y)
    assert_equal(len(cw), len(classes))
    assert_array_almost_equal(cw, np.array([1., 1., 1.]))

    # Test with unbalanced class labels.
    y = np.asarray([-1, 0, 0, -2, -2, -2])
    cw = assert_warns(DeprecationWarning, compute_class_weight, "auto",
                      classes, y)
    assert_almost_equal(cw.sum(), classes.shape)
    assert_equal(len(cw), len(classes))
    assert_array_almost_equal(cw, np.array([0.545, 1.636, 0.818]), decimal=3)

    cw = compute_class_weight("balanced", classes, y)
    assert_equal(len(cw), len(classes))
    class_counts = np.bincount(y + 2)
    assert_almost_equal(np.dot(cw, class_counts), y.shape[0])
    assert_array_almost_equal(cw, [2. / 3, 2., 1.])
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:28,代码来源:test_class_weight.py


示例11: test_timeout

def test_timeout():
    sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True,
                 random_state=0, max_iter=1)
    with warnings.catch_warnings(record=True):
        warnings.simplefilter("always")

        assert_warns(ConvergenceWarning, sp.fit, X_sp, Y)
开发者ID:2011200799,项目名称:scikit-learn,代码行数:7,代码来源:test_sparse.py


示例12: test_oob_score_classification

def test_oob_score_classification():
    # Check that oob prediction is a good estimation of the generalization
    # error.
    X, y = make_imbalance(iris.data, iris.target, ratio={0: 20, 1: 25, 2: 50},
                          random_state=0)
    X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                        random_state=0)

    for base_estimator in [DecisionTreeClassifier(), SVC()]:
        clf = BalancedBaggingClassifier(
            base_estimator=base_estimator,
            n_estimators=100,
            bootstrap=True,
            oob_score=True,
            random_state=0).fit(X_train, y_train)

        test_score = clf.score(X_test, y_test)

        assert abs(test_score - clf.oob_score_) < 0.1

        # Test with few estimators
        assert_warns(UserWarning,
                     BalancedBaggingClassifier(
                         base_estimator=base_estimator,
                         n_estimators=1,
                         bootstrap=True,
                         oob_score=True,
                         random_state=0).fit,
                     X_train,
                     y_train)
开发者ID:glemaitre,项目名称:imbalanced-learn,代码行数:30,代码来源:test_classifier.py


示例13: test_lars_drop_for_good

def test_lars_drop_for_good():
    # Create an ill-conditioned situation in which the LARS has to go
    # far in the path to converge, and check that LARS and coordinate
    # descent give the same answers
    X = [[1e20,  1e20,  0],
         [-1e-32,  0,  0],
         [1,       1,  1]]
    y = [10, 10, 1]
    alpha = .0001

    def objective_function(coef):
        return (1. / (2. * len(X)) * linalg.norm(y - np.dot(X, coef)) ** 2
                + alpha * linalg.norm(coef, 1))

    lars = linear_model.LassoLars(alpha=alpha, normalize=False)
    assert_warns(ConvergenceWarning, lars.fit, X, y)
    lars_coef_ = lars.coef_
    lars_obj = objective_function(lars_coef_)

    coord_descent = linear_model.Lasso(alpha=alpha, tol=1e-10, normalize=False)
    with ignore_warnings():
        cd_coef_ = coord_descent.fit(X, y).coef_
    cd_obj = objective_function(cd_coef_)

    assert_less(lars_obj, cd_obj * (1. + 1e-8))
开发者ID:1oscar,项目名称:scikit-learn,代码行数:25,代码来源:test_least_angle.py


示例14: test_label_binarizer

def test_label_binarizer():
    lb = LabelBinarizer()

    # one-class case defaults to negative label
    inp = ["pos", "pos", "pos", "pos"]
    expected = np.array([[0, 0, 0, 0]]).T
    got = lb.fit_transform(inp)
    assert_false(assert_warns(DeprecationWarning, getattr, lb, "multilabel_"))
    assert_array_equal(lb.classes_, ["pos"])
    assert_array_equal(expected, got)
    assert_array_equal(lb.inverse_transform(got), inp)

    # two-class case
    inp = ["neg", "pos", "pos", "neg"]
    expected = np.array([[0, 1, 1, 0]]).T
    got = lb.fit_transform(inp)
    assert_false(assert_warns(DeprecationWarning, getattr, lb, "multilabel_"))
    assert_array_equal(lb.classes_, ["neg", "pos"])
    assert_array_equal(expected, got)

    to_invert = np.array([[1, 0], [0, 1], [0, 1], [1, 0]])
    assert_array_equal(lb.inverse_transform(to_invert), inp)

    # multi-class case
    inp = ["spam", "ham", "eggs", "ham", "0"]
    expected = np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]])
    got = lb.fit_transform(inp)
    assert_array_equal(lb.classes_, ["0", "eggs", "ham", "spam"])
    assert_false(assert_warns(DeprecationWarning, getattr, lb, "multilabel_"))
    assert_array_equal(expected, got)
    assert_array_equal(lb.inverse_transform(got), inp)
开发者ID:huyng,项目名称:scikit-learn,代码行数:31,代码来源:test_label.py


示例15: test_ward_agglomeration

def test_ward_agglomeration():
    """
    Check that we obtain the correct solution in a simplistic case
    """
    rnd = np.random.RandomState(0)
    mask = np.ones([10, 10], dtype=np.bool)
    X = rnd.randn(50, 100)
    connectivity = grid_to_graph(*mask.shape)
    assert_warns(DeprecationWarning, WardAgglomeration)

    with ignore_warnings():
        ward = WardAgglomeration(n_clusters=5, connectivity=connectivity)
        ward.fit(X)
    agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity)
    agglo.fit(X)
    assert_array_equal(agglo.labels_, ward.labels_)
    assert_true(np.size(np.unique(agglo.labels_)) == 5)

    X_red = agglo.transform(X)
    assert_true(X_red.shape[1] == 5)
    X_full = agglo.inverse_transform(X_red)
    assert_true(np.unique(X_full[0]).size == 5)
    assert_array_almost_equal(agglo.transform(X_full), X_red)

    # Check that fitting with no samples raises a ValueError
    assert_raises(ValueError, agglo.fit, X[:0])
开发者ID:0x0all,项目名称:scikit-learn,代码行数:26,代码来源:test_hierarchical.py


示例16: test_check_dataframe_warns_on_dtype

def test_check_dataframe_warns_on_dtype():
    # Check that warn_on_dtype also works for DataFrames.
    # https://github.com/scikit-learn/scikit-learn/issues/10948
    pd = importorskip("pandas")

    df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], dtype=object)
    assert_warns_message(DataConversionWarning,
                         "Data with input dtype object were all converted to "
                         "float64.",
                         check_array, df, dtype=np.float64, warn_on_dtype=True)
    assert_warns(DataConversionWarning, check_array, df,
                 dtype='numeric', warn_on_dtype=True)
    assert_no_warnings(check_array, df, dtype='object', warn_on_dtype=True)

    # Also check that it raises a warning for mixed dtypes in a DataFrame.
    df_mixed = pd.DataFrame([['1', 2, 3], ['4', 5, 6]])
    assert_warns(DataConversionWarning, check_array, df_mixed,
                 dtype=np.float64, warn_on_dtype=True)
    assert_warns(DataConversionWarning, check_array, df_mixed,
                 dtype='numeric', warn_on_dtype=True)
    assert_warns(DataConversionWarning, check_array, df_mixed,
                 dtype=object, warn_on_dtype=True)

    # Even with numerical dtypes, a conversion can be made because dtypes are
    # uniformized throughout the array.
    df_mixed_numeric = pd.DataFrame([[1., 2, 3], [4., 5, 6]])
    assert_warns(DataConversionWarning, check_array, df_mixed_numeric,
                 dtype='numeric', warn_on_dtype=True)
    assert_no_warnings(check_array, df_mixed_numeric.astype(int),
                       dtype='numeric', warn_on_dtype=True)
开发者ID:henrywoo,项目名称:scikit-learn,代码行数:30,代码来源:test_validation.py


示例17: test_sparse_randomized_pca_inverse

def test_sparse_randomized_pca_inverse():
    """Test that RandomizedPCA is inversible on sparse data"""
    rng = np.random.RandomState(0)
    n, p = 50, 3
    X = rng.randn(n, p)  # spherical data
    X[:, 1] *= .00001  # make middle component relatively small
    # no large means because the sparse version of randomized pca does not do
    # centering to avoid breaking the sparsity
    X = csr_matrix(X)

    # same check that we can find the original data from the transformed signal
    # (since the data is almost of rank n_components)
    pca = RandomizedPCA(n_components=2, random_state=0)
    assert_warns(DeprecationWarning, pca.fit, X)
    Y = pca.transform(X)

    Y_inverse = pca.inverse_transform(Y)
    assert_almost_equal(X.todense(), Y_inverse, decimal=2)

    # same as above with whitening (approximate reconstruction)
    pca = assert_warns(DeprecationWarning, RandomizedPCA(n_components=2,
                       whiten=True, random_state=0).fit, X)
    Y = pca.transform(X)
    Y_inverse = pca.inverse_transform(Y)
    relative_max_delta = (np.abs(X.todense() - Y_inverse)
                          / np.abs(X).mean()).max()
    # XXX: this does not seam to work as expected:
    assert_almost_equal(relative_max_delta, 0.91, decimal=2)
开发者ID:Adrellias,项目名称:scikit-learn,代码行数:28,代码来源:test_pca.py


示例18: test_oob_score_classification

def test_oob_score_classification():
    # Check that oob prediction is a good estimation of the generalization
    # error.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)

    for base_estimator in [DecisionTreeClassifier(), SVC()]:
        clf = BaggingClassifier(base_estimator=base_estimator,
                                n_estimators=100,
                                bootstrap=True,
                                oob_score=True,
                                random_state=rng).fit(X_train, y_train)

        test_score = clf.score(X_test, y_test)

        assert_less(abs(test_score - clf.oob_score_), 0.1)

        # Test with few estimators
        assert_warns(UserWarning,
                     BaggingClassifier(base_estimator=base_estimator,
                                       n_estimators=1,
                                       bootstrap=True,
                                       oob_score=True,
                                       random_state=rng).fit,
                     X_train,
                     y_train)
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:28,代码来源:test_bagging.py


示例19: test_check_array_accept_sparse_type_exception

def test_check_array_accept_sparse_type_exception():
    X = [[1, 2], [3, 4]]
    X_csr = sp.csr_matrix(X)
    invalid_type = SVR()

    msg = ("A sparse matrix was passed, but dense data is required. "
           "Use X.toarray() to convert to a dense numpy array.")
    assert_raise_message(TypeError, msg,
                         check_array, X_csr, accept_sparse=False)
    with pytest.warns(DeprecationWarning):
        assert_raise_message(TypeError, msg,
                             check_array, X_csr, accept_sparse=None)

    msg = ("Parameter 'accept_sparse' should be a string, "
           "boolean or list of strings. You provided 'accept_sparse={}'.")
    assert_raise_message(ValueError, msg.format(invalid_type),
                         check_array, X_csr, accept_sparse=invalid_type)

    msg = ("When providing 'accept_sparse' as a tuple or list, "
           "it must contain at least one string value.")
    assert_raise_message(ValueError, msg.format([]),
                         check_array, X_csr, accept_sparse=[])
    assert_raise_message(ValueError, msg.format(()),
                         check_array, X_csr, accept_sparse=())

    assert_raise_message(TypeError, "SVR",
                         check_array, X_csr, accept_sparse=[invalid_type])

    # Test deprecation of 'None'
    assert_warns(DeprecationWarning, check_array, X, accept_sparse=None)
开发者ID:henrywoo,项目名称:scikit-learn,代码行数:30,代码来源:test_validation.py


示例20: test_k_means_function

def test_k_means_function():
    # test calling the k_means function directly
    # catch output
    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters,
                                                   verbose=True)
    finally:
        sys.stdout = old_stdout
    centers = cluster_centers
    assert_equal(centers.shape, (n_clusters, n_features))

    labels = labels
    assert_equal(np.unique(labels).shape[0], n_clusters)

    # check that the labels assignment are perfect (up to a permutation)
    assert_equal(v_measure_score(true_labels, labels), 1.0)
    assert_greater(inertia, 0.0)

    # check warning when centers are passed
    assert_warns(RuntimeWarning, k_means, X, n_clusters=n_clusters,
                 init=centers)

    # to many clusters desired
    assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1)
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:26,代码来源:test_k_means.py



注:本文中的sklearn.utils.testing.assert_warns函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python testing.assert_warns_message函数代码示例发布时间:2022-05-27
下一篇:
Python testing.assert_true函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap