本文整理汇总了Python中sklearn.utils.testing.assert_warns_message函数的典型用法代码示例。如果您正苦于以下问题:Python assert_warns_message函数的具体用法?Python assert_warns_message怎么用?Python assert_warns_message使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了assert_warns_message函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_redundant_bins
def test_redundant_bins(strategy, expected_bin_edges):
X = [[0], [0], [0], [0], [3], [3]]
kbd = KBinsDiscretizer(n_bins=3, strategy=strategy)
msg = ("Bins whose width are too small (i.e., <= 1e-8) in feature 0 "
"are removed. Consider decreasing the number of bins.")
assert_warns_message(UserWarning, msg, kbd.fit, X)
assert_array_almost_equal(kbd.bin_edges_[0], expected_bin_edges)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:7,代码来源:test_discretization.py
示例2: test_threshold_deprecation
def test_threshold_deprecation():
X = [[0.0], [1.0]]
clf = EllipticEnvelope().fit(X)
assert_warns_message(DeprecationWarning,
"threshold_ attribute is deprecated in 0.20 and will"
" be removed in 0.22.",
getattr, clf, "threshold_")
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:7,代码来源:test_elliptic_envelope.py
示例3: test_kfold_valueerrors
def test_kfold_valueerrors():
X1 = np.array([[1, 2], [3, 4], [5, 6]])
X2 = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]])
# Check that errors are raised if there is not enough samples
assert_raises(ValueError, next, KFold(4).split(X1))
# Check that a warning is raised if the least populated class has too few
# members.
y = np.array([3, 3, -1, -1, 2])
skf_3 = StratifiedKFold(3)
assert_warns_message(Warning, "The least populated class",
next, skf_3.split(X2, y))
# Check that despite the warning the folds are still computed even
# though all the classes are not necessarily represented at on each
# side of the split at each split
with warnings.catch_warnings():
check_cv_coverage(skf_3, X2, y, labels=None, expected_n_iter=3)
# Error when number of folds is <= 1
assert_raises(ValueError, KFold, 0)
assert_raises(ValueError, KFold, 1)
assert_raises(ValueError, StratifiedKFold, 0)
assert_raises(ValueError, StratifiedKFold, 1)
# When n_folds is not integer:
assert_raises(ValueError, KFold, 1.5)
assert_raises(ValueError, KFold, 2.0)
assert_raises(ValueError, StratifiedKFold, 1.5)
assert_raises(ValueError, StratifiedKFold, 2.0)
# When shuffle is not a bool:
assert_raises(TypeError, KFold, n_folds=4, shuffle=None)
开发者ID:absolutelyNoWarranty,项目名称:scikit-learn,代码行数:34,代码来源:test_split.py
示例4: test_pickle_version_warning
def test_pickle_version_warning():
# check that warnings are raised when unpickling in a different version
# first, check no warning when in the same version:
iris = datasets.load_iris()
tree = DecisionTreeClassifier().fit(iris.data, iris.target)
tree_pickle = pickle.dumps(tree)
assert_true(b"version" in tree_pickle)
assert_no_warnings(pickle.loads, tree_pickle)
# check that warning is raised on different version
tree_pickle_other = tree_pickle.replace(sklearn.__version__.encode(),
b"something")
message = ("Trying to unpickle estimator DecisionTreeClassifier from "
"version {0} when using version {1}. This might lead to "
"breaking code or invalid results. "
"Use at your own risk.".format("something",
sklearn.__version__))
assert_warns_message(UserWarning, message, pickle.loads, tree_pickle_other)
# check that not including any version also works:
# TreeNoVersion has no getstate, like pre-0.18
tree = TreeNoVersion().fit(iris.data, iris.target)
tree_pickle_noversion = pickle.dumps(tree)
assert_false(b"version" in tree_pickle_noversion)
message = message.replace("something", "pre-0.18")
message = message.replace("DecisionTreeClassifier", "TreeNoVersion")
# check we got the warning about using pre-0.18 pickle
assert_warns_message(UserWarning, message, pickle.loads,
tree_pickle_noversion)
# check that no warning is raised for external estimators
TreeNoVersion.__module__ = "notsklearn"
assert_no_warnings(pickle.loads, tree_pickle_noversion)
开发者ID:jblackburne,项目名称:scikit-learn,代码行数:35,代码来源:test_base.py
示例5: test_vectorizer_stop_words_inconsistent
def test_vectorizer_stop_words_inconsistent():
if PY2:
lstr = "[u'and', u'll', u've']"
else:
lstr = "['and', 'll', 've']"
message = ('Your stop_words may be inconsistent with your '
'preprocessing. Tokenizing the stop words generated '
'tokens %s not in stop_words.' % lstr)
for vec in [CountVectorizer(),
TfidfVectorizer(), HashingVectorizer()]:
vec.set_params(stop_words=["you've", "you", "you'll", 'AND'])
assert_warns_message(UserWarning, message, vec.fit_transform,
['hello world'])
# reset stop word validation
del vec._stop_words_id
assert _check_stop_words_consistency(vec) is False
# Only one warning per stop list
assert_no_warnings(vec.fit_transform, ['hello world'])
assert _check_stop_words_consistency(vec) is None
# Test caching of inconsistency assessment
vec.set_params(stop_words=["you've", "you", "you'll", 'blah', 'AND'])
assert_warns_message(UserWarning, message, vec.fit_transform,
['hello world'])
开发者ID:peterpan83,项目名称:scikit-learn,代码行数:25,代码来源:test_text.py
示例6: test_convergence_warning
def test_convergence_warning(dataset, algo_class):
X, y = dataset
model = algo_class(max_iter=2, verbose=True)
cls_name = model.__class__.__name__
assert_warns_message(ConvergenceWarning,
'[{}] {} did not converge'.format(cls_name, cls_name),
model.fit, X, y)
开发者ID:all-umass,项目名称:metric-learn,代码行数:7,代码来源:metric_learn_test.py
示例7: test_nystroem_callable
def test_nystroem_callable():
# Test Nystroem on a callable.
rnd = np.random.RandomState(42)
n_samples = 10
X = rnd.uniform(size=(n_samples, 4))
def logging_histogram_kernel(x, y, log):
"""Histogram kernel that writes to a log."""
log.append(1)
return np.minimum(x, y).sum()
kernel_log = []
X = list(X) # test input validation
Nystroem(kernel=logging_histogram_kernel,
n_components=(n_samples - 1),
kernel_params={'log': kernel_log}).fit(X)
assert_equal(len(kernel_log), n_samples * (n_samples - 1) / 2)
def linear_kernel(X, Y):
return np.dot(X, Y.T)
# if degree, gamma or coef0 is passed, we raise a warning
msg = "Passing gamma, coef0 or degree to Nystroem"
params = ({'gamma': 1}, {'coef0': 1}, {'degree': 2})
for param in params:
ny = Nystroem(kernel=linear_kernel, **param)
assert_warns_message(DeprecationWarning, msg, ny.fit, X)
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:27,代码来源:test_kernel_approximation.py
示例8: test_fetch_openml_iris
def test_fetch_openml_iris(monkeypatch, gzip_response):
# classification dataset with numeric only columns
data_id = 61
data_name = 'iris'
data_version = 1
target_column = 'class'
expected_observations = 150
expected_features = 4
expected_missing = 0
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
assert_warns_message(
UserWarning,
"Multiple active versions of the dataset matching the name"
" iris exist. Versions may be fundamentally different, "
"returning version 1.",
_fetch_dataset_from_openml,
**{'data_id': data_id, 'data_name': data_name,
'data_version': data_version,
'target_column': target_column,
'expected_observations': expected_observations,
'expected_features': expected_features,
'expected_missing': expected_missing,
'expect_sparse': False,
'expected_data_dtype': np.float64,
'expected_target_dtype': object,
'compare_default_target': True}
)
开发者ID:abecadel,项目名称:scikit-learn,代码行数:28,代码来源:test_openml.py
示例9: test_mcd_increasing_det_warning
def test_mcd_increasing_det_warning():
# Check that a warning is raised if we observe increasing determinants
# during the c_step. In theory the sequence of determinants should be
# decreasing. Increasing determinants are likely due to ill-conditioned
# covariance matrices that result in poor precision matrices.
X = [[5.1, 3.5, 1.4, 0.2],
[4.9, 3.0, 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5.0, 3.6, 1.4, 0.2],
[4.6, 3.4, 1.4, 0.3],
[5.0, 3.4, 1.5, 0.2],
[4.4, 2.9, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.1],
[5.4, 3.7, 1.5, 0.2],
[4.8, 3.4, 1.6, 0.2],
[4.8, 3.0, 1.4, 0.1],
[4.3, 3.0, 1.1, 0.1],
[5.1, 3.5, 1.4, 0.3],
[5.7, 3.8, 1.7, 0.3],
[5.4, 3.4, 1.7, 0.2],
[4.6, 3.6, 1.0, 0.2],
[5.0, 3.0, 1.6, 0.2],
[5.2, 3.5, 1.5, 0.2]]
mcd = MinCovDet(random_state=1)
assert_warns_message(RuntimeWarning,
"Determinant has increased",
mcd.fit, X)
开发者ID:MartinThoma,项目名称:scikit-learn,代码行数:30,代码来源:test_robust_covariance.py
示例10: test_check_dataframe_warns_on_dtype
def test_check_dataframe_warns_on_dtype():
# Check that warn_on_dtype also works for DataFrames.
# https://github.com/scikit-learn/scikit-learn/issues/10948
pd = importorskip("pandas")
df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], dtype=object)
assert_warns_message(DataConversionWarning,
"Data with input dtype object were all converted to "
"float64.",
check_array, df, dtype=np.float64, warn_on_dtype=True)
assert_warns(DataConversionWarning, check_array, df,
dtype='numeric', warn_on_dtype=True)
assert_no_warnings(check_array, df, dtype='object', warn_on_dtype=True)
# Also check that it raises a warning for mixed dtypes in a DataFrame.
df_mixed = pd.DataFrame([['1', 2, 3], ['4', 5, 6]])
assert_warns(DataConversionWarning, check_array, df_mixed,
dtype=np.float64, warn_on_dtype=True)
assert_warns(DataConversionWarning, check_array, df_mixed,
dtype='numeric', warn_on_dtype=True)
assert_warns(DataConversionWarning, check_array, df_mixed,
dtype=object, warn_on_dtype=True)
# Even with numerical dtypes, a conversion can be made because dtypes are
# uniformized throughout the array.
df_mixed_numeric = pd.DataFrame([[1., 2, 3], [4., 5, 6]])
assert_warns(DataConversionWarning, check_array, df_mixed_numeric,
dtype='numeric', warn_on_dtype=True)
assert_no_warnings(check_array, df_mixed_numeric.astype(int),
dtype='numeric', warn_on_dtype=True)
开发者ID:henrywoo,项目名称:scikit-learn,代码行数:30,代码来源:test_validation.py
示例11: test_affinity_propagation_equal_mutual_similarities
def test_affinity_propagation_equal_mutual_similarities():
X = np.array([[-1, 1], [1, -1]])
S = -euclidean_distances(X, squared=True)
# setting preference > similarity
cluster_center_indices, labels = assert_warns_message(
UserWarning, "mutually equal", affinity_propagation, S, preference=0)
# expect every sample to become an exemplar
assert_array_equal([0, 1], cluster_center_indices)
assert_array_equal([0, 1], labels)
# setting preference < similarity
cluster_center_indices, labels = assert_warns_message(
UserWarning, "mutually equal", affinity_propagation, S, preference=-10)
# expect one cluster, with arbitrary (first) sample as exemplar
assert_array_equal([0], cluster_center_indices)
assert_array_equal([0, 0], labels)
# setting different preferences
cluster_center_indices, labels = assert_no_warnings(
affinity_propagation, S, preference=[-20, -10])
# expect one cluster, with highest-preference sample as exemplar
assert_array_equal([1], cluster_center_indices)
assert_array_equal([0, 0], labels)
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:27,代码来源:test_affinity_propagation.py
示例12: test_wishart_log_det
def test_wishart_log_det():
a = np.array([0.1, 0.8, 0.01, 0.09])
b = np.array([0.2, 0.7, 0.05, 0.1])
assert_warns_message(DeprecationWarning, "The function "
"wishart_log_det is deprecated in 0.18 and"
" will be removed in 0.20.",
wishart_log_det, a, b, 2, 4)
开发者ID:Erotemic,项目名称:scikit-learn,代码行数:7,代码来源:test_dpgmm.py
示例13: test_deprecated_auc_reorder
def test_deprecated_auc_reorder():
depr_message = ("The 'reorder' parameter has been deprecated in version "
"0.20 and will be removed in 0.22. It is recommended not "
"to set 'reorder' and ensure that x is monotonic "
"increasing or monotonic decreasing.")
assert_warns_message(DeprecationWarning, depr_message, auc,
[1, 2], [2, 3], reorder=True)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:7,代码来源:test_ranking.py
示例14: test_fetch_openml_australian
def test_fetch_openml_australian(monkeypatch, gzip_response):
# sparse dataset
# Australian is the only sparse dataset that is reasonably small
# as it is inactive, we need to catch the warning. Due to mocking
# framework, it is not deactivated in our tests
data_id = 292
data_name = 'Australian'
data_version = 1
target_column = 'Y'
# Not all original instances included for space reasons
expected_observations = 85
expected_features = 14
expected_missing = 0
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
assert_warns_message(
UserWarning,
"Version 1 of dataset Australian is inactive,",
_fetch_dataset_from_openml,
**{'data_id': data_id, 'data_name': data_name,
'data_version': data_version,
'target_column': target_column,
'expected_observations': expected_observations,
'expected_features': expected_features,
'expected_missing': expected_missing,
'expect_sparse': True,
'expected_data_dtype': np.float64,
'expected_target_dtype': object,
'compare_default_target': False} # numpy specific check
)
开发者ID:abecadel,项目名称:scikit-learn,代码行数:29,代码来源:test_openml.py
示例15: test_raw_values_deprecation
def test_raw_values_deprecation():
X = [[0.0], [1.0]]
clf = EllipticEnvelope().fit(X)
assert_warns_message(DeprecationWarning,
"raw_values parameter is deprecated in 0.20 and will"
" be removed in 0.22.",
clf.decision_function, X, raw_values=True)
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:7,代码来源:test_elliptic_envelope.py
示例16: test_label_binarize_multilabel
def test_label_binarize_multilabel():
y_seq = [(1,), (0, 1, 2), tuple()]
y_ind = np.array([[0, 1, 0], [1, 1, 1], [0, 0, 0]])
classes = [0, 1, 2]
pos_label = 2
neg_label = 0
expected = pos_label * y_ind
y_sparse = [sparse_matrix(y_ind)
for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix,
dok_matrix, lil_matrix]]
for y in [y_ind] + y_sparse:
yield (check_binarized_results, y, classes, pos_label, neg_label,
expected)
deprecation_message = ("Direct support for sequence of sequences " +
"multilabel representation will be unavailable " +
"from version 0.17. Use sklearn.preprocessing." +
"MultiLabelBinarizer to convert to a label " +
"indicator representation.")
assert_warns_message(DeprecationWarning, deprecation_message,
check_binarized_results, y_seq, classes, pos_label,
neg_label, expected)
assert_raises(ValueError, label_binarize, y, classes, neg_label=-1,
pos_label=pos_label, sparse_output=True)
开发者ID:Greenall,项目名称:scikit-learn,代码行数:27,代码来源:test_label.py
示例17: test_lda_dimension_warning
def test_lda_dimension_warning(n_classes, n_features):
# FIXME: Future warning to be removed in 0.23
rng = check_random_state(0)
n_samples = 10
X = rng.randn(n_samples, n_features)
# we create n_classes labels by repeating and truncating a
# range(n_classes) until n_samples
y = np.tile(range(n_classes), n_samples // n_classes + 1)[:n_samples]
max_components = min(n_features, n_classes - 1)
for n_components in [max_components - 1, None, max_components]:
# if n_components <= min(n_classes - 1, n_features), no warning
lda = LinearDiscriminantAnalysis(n_components=n_components)
assert_no_warnings(lda.fit, X, y)
for n_components in [max_components + 1,
max(n_features, n_classes - 1) + 1]:
# if n_components > min(n_classes - 1, n_features), raise warning
# We test one unit higher than max_components, and then something
# larger than both n_features and n_classes - 1 to ensure the test
# works for any value of n_component
lda = LinearDiscriminantAnalysis(n_components=n_components)
msg = ("n_components cannot be larger than min(n_features, "
"n_classes - 1). Using min(n_features, "
"n_classes - 1) = min(%d, %d - 1) = %d components." %
(n_features, n_classes, max_components))
assert_warns_message(ChangedBehaviorWarning, msg, lda.fit, X, y)
future_msg = ("In version 0.23, setting n_components > min("
"n_features, n_classes - 1) will raise a "
"ValueError. You should set n_components to None"
" (default), or a value smaller or equal to "
"min(n_features, n_classes - 1).")
assert_warns_message(FutureWarning, future_msg, lda.fit, X, y)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:33,代码来源:test_discriminant_analysis.py
示例18: test_load_lfw_pairs_deprecation
def test_load_lfw_pairs_deprecation():
msg = (
"Function 'load_lfw_pairs' has been deprecated in 0.17 and will be "
"removed in 0.19."
"Use fetch_lfw_pairs(download_if_missing=False) instead."
)
assert_warns_message(DeprecationWarning, msg, load_lfw_pairs, data_home=SCIKIT_LEARN_DATA)
开发者ID:Claire-Ling-Liu,项目名称:scikit-learn,代码行数:7,代码来源:test_lfw.py
示例19: test_deprecated_calinski_harabaz_score
def test_deprecated_calinski_harabaz_score():
depr_message = ("Function 'calinski_harabaz_score' has been renamed "
"to 'calinski_harabasz_score' "
"and will be removed in version 0.23.")
assert_warns_message(DeprecationWarning, depr_message,
calinski_harabaz_score,
np.ones((10, 2)), [0] * 5 + [1] * 5)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:7,代码来源:test_unsupervised.py
示例20: test_rfe_deprecation_estimator_params
def test_rfe_deprecation_estimator_params():
deprecation_message = (
"The parameter 'estimator_params' is deprecated as "
"of version 0.16 and will be removed in 0.18. The "
"parameter is no longer necessary because the "
"value is set via the estimator initialisation or "
"set_params method."
)
generator = check_random_state(0)
iris = load_iris()
X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
y = iris.target
assert_warns_message(
DeprecationWarning,
deprecation_message,
RFE(estimator=SVC(), n_features_to_select=4, step=0.1, estimator_params={"kernel": "linear"}).fit,
X=X,
y=y,
)
assert_warns_message(
DeprecationWarning,
deprecation_message,
RFECV(estimator=SVC(), step=1, cv=5, estimator_params={"kernel": "linear"}).fit,
X=X,
y=y,
)
开发者ID:albertotb,项目名称:scikit-learn,代码行数:27,代码来源:test_rfe.py
注:本文中的sklearn.utils.testing.assert_warns_message函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论