• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python validation.assert_all_finite函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.utils.validation.assert_all_finite函数的典型用法代码示例。如果您正苦于以下问题:Python assert_all_finite函数的具体用法?Python assert_all_finite怎么用?Python assert_all_finite使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了assert_all_finite函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _scrub_x

    def _scrub_x(self, X, missing, **kwargs):
        '''
        Sanitize input predictors and extract column names if appropriate.
        '''
        # Check for sparseness
        if sparse.issparse(X):
            raise TypeError('A sparse matrix was passed, but dense data '
                            'is required. Use X.toarray() to convert to dense.')
        
        # Figure out missingness
        if missing is None:
            # Infer missingness
            missing = np.isnan(X)
            
        # Convert to internally used data type
        missing = np.asarray(missing, dtype=BOOL, order='F')
        assert_all_finite(missing)
        if missing.ndim == 1:
            missing = missing[:, np.newaxis]
        X = np.asarray(X, dtype=np.float64, order='F')
        if not self.allow_missing:
            try:
                assert_all_finite(X)
            except ValueError:
                raise ValueError("Input contains NaN, infinity or a value that's too large.  Did you mean to set allow_missing=True?")
        if X.ndim == 1:
            X = X[:, np.newaxis]

        # Ensure correct number of columns
        if hasattr(self, 'basis_') and self.basis_ is not None:
            if X.shape[1] != self.basis_.num_variables:
                raise ValueError('Wrong number of columns in X')
        
        return X, missing
开发者ID:Panadaren,项目名称:py-earth,代码行数:34,代码来源:earth.py


示例2: predict_proba

    def predict_proba(self, X):
        """ Predict label probabilities with the fitted estimator 
        on predictor(s) X.

        Returns
        -------
        proba : array of shape = [n_samples]
            The predicted label probabilities of the input samples.
        """
        proba = []

        X_subs = self._get_subdata(X)

        for i in range(self.n_classes_):
            e = self.estimators_[i]
            X_i = X_subs[i]
            pred = e.predict(X_i).reshape(-1, 1)
            proba.append(pred)
        proba = np.hstack(proba)

        normalizer = proba.sum(axis=1)[:, np.newaxis]
        normalizer[normalizer == 0.0] = 1.0
        proba /= normalizer

        assert_all_finite(proba)

        return proba
开发者ID:swarbrickjones,项目名称:RandomActsOfPizzaKaggle,代码行数:27,代码来源:stacking.py


示例3: _make_meta

 def _make_meta(self, X):
     rows = []
     for e in self.estimators_:
         proba = e.predict_proba(X)
         assert_all_finite(proba)
         rows.append(proba)
     return np.hstack(rows)
开发者ID:AlexInTown,项目名称:otto,代码行数:7,代码来源:stacking.py


示例4: predict

    def predict(self, X):
        """
        Perform regression on an array of test vectors X.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        p : array, shape = [n_samples]
            Predicted target values for X
        """
        try:
            assert_all_finite(self.coef_)
            pred = safe_sparse_dot(X, self.coef_.T)
        except ValueError:
            n_samples = X.shape[0]
            n_vectors = self.coef_.shape[0]
            pred = np.zeros((n_samples, n_vectors))

        if not self.outputs_2d_:
            pred = pred.ravel()

        return pred
开发者ID:shockley,项目名称:lightning,代码行数:25,代码来源:sgd.py


示例5: test_suppress_validation

def test_suppress_validation():
    X = np.array([0, np.inf])
    assert_raises(ValueError, assert_all_finite, X)
    sklearn.set_config(assume_finite=True)
    assert_all_finite(X)
    sklearn.set_config(assume_finite=False)
    assert_raises(ValueError, assert_all_finite, X)
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:7,代码来源:test_validation.py


示例6: _fit_diag

  def _fit_diag(self, pairs, y):
    """Learn diagonal metric using MMC.
    Parameters
    ----------
    X : (n x d) data matrix
        each row corresponds to a single instance
    constraints : 4-tuple of arrays
        (a,b,c,d) indices into X, with (a,b) specifying similar and (c,d)
        dissimilar pairs
    """
    num_dim = pairs.shape[2]
    pos_pairs, neg_pairs = pairs[y == 1], pairs[y == -1]
    s_sum = np.sum((pos_pairs[:, 0, :] - pos_pairs[:, 1, :]) ** 2, axis=0)

    it = 0
    error = 1.0
    eps = 1e-6
    reduction = 2.0
    w = np.diag(self.A_).copy()

    while error > self.convergence_threshold and it < self.max_iter:

      fD0, fD_1st_d, fD_2nd_d = self._D_constraint(neg_pairs, w)
      obj_initial = np.dot(s_sum, w) + self.diagonal_c * fD0
      fS_1st_d = s_sum  # first derivative of the similarity constraints

      gradient = fS_1st_d - self.diagonal_c * fD_1st_d               # gradient of the objective
      hessian = -self.diagonal_c * fD_2nd_d + eps * np.eye(num_dim)  # Hessian of the objective
      step = np.dot(np.linalg.inv(hessian), gradient)

      # Newton-Rapshon update
      # search over optimal lambda
      lambd = 1  # initial step-size
      w_tmp = np.maximum(0, w - lambd * step)
      obj = (np.dot(s_sum, w_tmp) + self.diagonal_c *
             self._D_objective(neg_pairs, w_tmp))
      assert_all_finite(obj)
      obj_previous = obj + 1  # just to get the while-loop started

      inner_it = 0
      while obj < obj_previous:
        obj_previous = obj
        w_previous = w_tmp.copy()
        lambd /= reduction
        w_tmp = np.maximum(0, w - lambd * step)
        obj = (np.dot(s_sum, w_tmp) + self.diagonal_c *
               self._D_objective(neg_pairs, w_tmp))
        inner_it += 1
        assert_all_finite(obj)

      w[:] = w_previous
      error = np.abs((obj_previous - obj_initial) / obj_previous)
      if self.verbose:
        print('mmc iter: %d, conv = %f' % (it, error))
      it += 1

    self.A_ = np.diag(w)

    self.transformer_ = transformer_from_metric(self.A_)
    return self
开发者ID:all-umass,项目名称:metric-learn,代码行数:60,代码来源:mmc.py


示例7: _svd

    def _svd(self, array, n_components, n_discard):
        """Returns first `n_components` left and right singular
        vectors u and v, discarding the first `n_discard`.

        """
        if self.svd_method == "randomized":
            kwargs = {}
            if self.n_svd_vecs is not None:
                kwargs["n_oversamples"] = self.n_svd_vecs
            u, _, vt = randomized_svd(array, n_components, random_state=self.random_state, **kwargs)

        elif self.svd_method == "arpack":
            u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs)
            if np.any(np.isnan(vt)):
                # some eigenvalues of A * A.T are negative, causing
                # sqrt() to be np.nan. This causes some vectors in vt
                # to be np.nan.
                _, v = eigsh(safe_sparse_dot(array.T, array), ncv=self.n_svd_vecs)
                vt = v.T
            if np.any(np.isnan(u)):
                _, u = eigsh(safe_sparse_dot(array, array.T), ncv=self.n_svd_vecs)

        assert_all_finite(u)
        assert_all_finite(vt)
        u = u[:, n_discard:]
        vt = vt[n_discard:]
        return u, vt.T
开发者ID:VirgileFritsch,项目名称:scikit-learn,代码行数:27,代码来源:spectral.py


示例8: test_gibbs_smoke

def test_gibbs_smoke():
    """Check if we don't get NaNs sampling the full digits dataset."""
    rng = np.random.RandomState(42)
    X = Xdigits.astype(np.float32)
    rbm1 = BernoulliRBM(X.shape[1], n_hidden=42, batch_size=40,
                        n_iter=20, random_state=rng)
    rbm1.fit(X)
    X_sampled = rbm1.gibbs(X)
    assert_all_finite(X_sampled)
开发者ID:stachon,项目名称:binet,代码行数:9,代码来源:test_rbm.py


示例9: test_gibbs_smoke

def test_gibbs_smoke():
    """ just seek if we don't get NaNs sampling the full digits dataset """
    rng = np.random.RandomState(42)
    X = Xdigits
    rbm1 = BernoulliRBM(n_components=42, batch_size=10,
                        n_iter=20, random_state=rng)
    rbm1.fit(X)
    X_sampled = rbm1.gibbs(X)
    assert_all_finite(X_sampled)
开发者ID:Ashatz,项目名称:scikit-learn,代码行数:9,代码来源:test_rbm.py


示例10: test_gibbs_smoke

def test_gibbs_smoke():
    """Check if we don't get NaNs sampling the full digits dataset.
    Also check that sampling again will yield different results."""
    X = Xdigits
    rbm1 = BernoulliRBM(n_components=42, batch_size=40, n_iter=20, random_state=42)
    rbm1.fit(X)
    X_sampled = rbm1.gibbs(X)
    assert_all_finite(X_sampled)
    X_sampled2 = rbm1.gibbs(X)
    assert_true(np.all((X_sampled != X_sampled2).max(axis=1)))
开发者ID:amitmse,项目名称:scikit-learn,代码行数:10,代码来源:test_rbm.py


示例11: custom_svd

def custom_svd(array, n_components, n_discard,n_svd_vecs):
	u, _, vt = svds(array, k=n_components, ncv=n_svd_vecs)
	if np.any(np.isnan(vt)):
		_, v = eigsh(safe_sparse_dot(array.T, array),ncv=n_svd_vecs)
		vt = v.T
	if np.any(np.isnan(u)):
		_, u = eigsh(safe_sparse_dot(array, array.T),ncv=n_svd_vecs)
	assert_all_finite(u)
	assert_all_finite(vt)
	u = u[:, n_discard:]
	vt = vt[n_discard:]
	return u, vt.T
开发者ID:rupam13081,项目名称:BDAProject2016,代码行数:12,代码来源:BiclusteringWithoutSpark.py


示例12: fit

    def fit(self, X, y):
        """Fit model according to X and y.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like, shape = [n_samples] or [n_samples, n_targets]
            Target values.

        Returns
        -------
        self : regressor
            Returns self.
        """
        rs = check_random_state(self.random_state)

        ds = get_dataset(X)
        n_samples = ds.get_n_samples()
        n_features = ds.get_n_features()

        self.outputs_2d_ = len(y.shape) == 2
        if self.outputs_2d_:
            Y = y
        else:
            Y = y.reshape(-1, 1)
        Y = np.asfortranarray(Y)
        n_vectors = Y.shape[1]
        self.coef_ = np.zeros((n_vectors, n_features), dtype=np.float64)
        self.intercept_ = np.zeros(n_vectors, dtype=np.float64)

        loss = self._get_loss()
        penalty = self._get_penalty()

        for k in xrange(n_vectors):
            _binary_sgd(self,
                        self.coef_, self.intercept_, k,
                        ds, Y[:, k], loss, penalty, self.alpha,
                        self._get_learning_rate(),
                        self.eta0, self.power_t,
                        self.fit_intercept,
                        self.intercept_decay,
                        int(self.max_iter * n_samples), self.shuffle, rs,
                        self.callback, self.n_calls, self.verbose)

        try:
            assert_all_finite(self.coef_)
        except ValueError:
            warnings.warn("coef_ contains infinite values")

        return self
开发者ID:shockley,项目名称:lightning,代码行数:53,代码来源:sgd.py


示例13: predict

    def predict(self, X):
        try:
            assert_all_finite(self.coef_)
            pred = safe_sparse_dot(X, self.coef_.T)
        except ValueError:
            n_samples = X.shape[0]
            n_vectors = self.coef_.shape[0]
            pred = np.zeros((n_samples, n_vectors))

        if not self.outputs_2d_:
            pred = pred.ravel()

        return pred
开发者ID:aurora1625,项目名称:lightning,代码行数:13,代码来源:sgd.py


示例14: test_cd_linear_trivial

def test_cd_linear_trivial():
    # trivial example that failed due to gh#4
    loss = Squared()
    alpha = 1e-5
    n_features = 100
    x = np.zeros((1, n_features))
    x[0, 1] = 1
    y = np.ones(1)
    cb = Callback(x, y, alpha)
    w = _fit_linear(x, y, alpha, n_iter=20, loss=loss, callback=cb)

    assert_all_finite(w)
    assert_all_finite(cb.losses_)
开发者ID:Saikrishna41,项目名称:polylearn,代码行数:13,代码来源:test_cd_linear.py


示例15: fit

    def fit(self, X, y):
        rs = check_random_state(self.random_state)

        reencode = self.multiclass
        y, n_classes, n_vectors = self._set_label_transformers(y, reencode)

        ds = get_dataset(X)
        n_samples = ds.get_n_samples()
        n_features = ds.get_n_features()
        self.coef_ = np.zeros((n_vectors, n_features), dtype=np.float64)

        self.intercept_ = np.zeros(n_vectors, dtype=np.float64)

        loss = self._get_loss()
        penalty = self._get_penalty()

        if n_vectors == 1 or not self.multiclass:
            Y = np.asfortranarray(self.label_binarizer_.fit_transform(y),
                                  dtype=np.float64)
            for i in xrange(n_vectors):
                _binary_sgd(self,
                            self.coef_, self.intercept_, i,
                            ds, Y[:, i], loss, penalty,
                            self.alpha,
                            self._get_learning_rate(),
                            self.eta0, self.power_t,
                            self.fit_intercept,
                            self.intercept_decay,
                            int(self.max_iter * n_samples), self.shuffle, rs,
                            self.callback, self.n_calls, self.verbose)

        elif self.multiclass:
            _multiclass_sgd(self, self.coef_, self.intercept_,
                            ds, y.astype(np.int32), loss, penalty,
                            self.alpha, self._get_learning_rate(),
                            self.eta0, self.power_t, self.fit_intercept,
                            self.intercept_decay,
                            int(self.max_iter * n_samples),
                            self.shuffle, rs, self.callback, self.n_calls,
                            self.verbose)

        else:
            raise ValueError("Wrong value for multiclass.")

        try:
            assert_all_finite(self.coef_)
        except ValueError:
            warnings.warn("coef_ contains infinite values")

        return self
开发者ID:aurora1625,项目名称:lightning,代码行数:50,代码来源:sgd.py


示例16: main

def main(name, num, useSpecial = False):

    labels = []
    with open("C:/MissingWord/corrScoring/"+name+"Labels.txt", "r") as f:
        for line in f:
            labels.append(float(line))

    features = []
    with open("C:/MissingWord/corrScoring/1000features.txt", "r") as f:
        for line in f:
            features.append([float(elem) for elem in line.split(",")])

    specialFeatures = getSpecialFeatures(len(features))

    if useSpecial:
        for i in range(min(len(specialFeatures), len(features))):
            features[i].extend(specialFeatures[i])

    features = features[:num]
    labels = labels[:num]

    for i in range(len(features)):
        if len(features[i]) != len(features[0]):
            print(i)
        try:
            assert_all_finite(features[i])
        except:
            print(i)

    cutoff = int(len(features) * 7 / 10)

    trainFeatures = features[:cutoff]
    testFeatures = features[cutoff:]

    trainLabels = labels[:cutoff]
    testLabels = labels[cutoff:]

    #regr = svm.SVR(C=1)
    regr = RandomForestRegressor(n_estimators = 300, n_jobs = 7)
    #regr = linear_model.LinearRegression()

    regr.fit(trainFeatures, trainLabels)

    print("Train Residual sum of squares: %.2f"% np.mean((regr.predict(trainFeatures) - trainLabels) ** 2))
    print("Test Residual sum of squares: %.2f"% np.mean((regr.predict(testFeatures) - testLabels) ** 2))

    print('Variance score: %.2f' % regr.score(testFeatures, testLabels))

    with open("C:/MissingWord/corrScoring/"+name+".regr", "wb") as f:
        pickle.dump(regr, f)
开发者ID:seokhohong,项目名称:missing-word,代码行数:50,代码来源:testRegression.py


示例17: _scrub

    def _scrub(self, X, y, sample_weight, **kwargs):
        '''
        Sanitize input data.
        '''
        # Check for sparseness
        if sparse.issparse(y):
            raise TypeError('A sparse matrix was passed, but dense data '
                            'is required. Use y.toarray() to convert to dense.')
        if sparse.issparse(sample_weight):
            raise TypeError('A sparse matrix was passed, but dense data '
                            'is required. Use sample_weight.toarray()'
                            'to convert to dense.')

        # Check whether X is the output of patsy.dmatrices
        if y is None and isinstance(X, tuple):
            y, X = X

        # Handle X separately
        X = self._scrub_x(X, **kwargs)

        # Convert y to internally used data type
        y = np.asarray(y, dtype=np.float64)
        assert_all_finite(y)
        y = y.reshape(y.shape[0])

        # Deal with sample_weight
        if sample_weight is None:
            sample_weight = np.ones(y.shape[0], dtype=y.dtype)
        else:
            sample_weight = np.asarray(sample_weight)
            assert_all_finite(sample_weight)
            sample_weight = sample_weight.reshape(sample_weight.shape[0])

        # Make sure dimensions match
        if y.shape[0] != X.shape[0]:
            raise ValueError('X and y do not have compatible dimensions.')
        if y.shape != sample_weight.shape:
            raise ValueError(
                'y and sample_weight do not have compatible dimensions.')

        # Make sure everything is finite
        assert_all_finite(X)
        assert_all_finite(y)
        assert_all_finite(sample_weight)

        return X, y, sample_weight
开发者ID:aleon1138,项目名称:py-earth,代码行数:46,代码来源:earth.py


示例18: predict_proba

    def predict_proba(self, X):
        proba = []

        X_subs = self._get_subdata(X)

        for i in range(self.n_classes_):
            e = self.estimators_[i]
            X_i = X_subs[i]
            pred = e.predict(X_i).reshape(-1, 1)
            proba.append(pred)
        proba = np.hstack(proba)

        normalizer = proba.sum(axis=1)[:, np.newaxis]
        normalizer[normalizer == 0.0] = 1.0
        proba /= normalizer

        assert_all_finite(proba)

        return proba
开发者ID:AlexInTown,项目名称:otto,代码行数:19,代码来源:stacking.py


示例19: _scrub_x

    def _scrub_x(self, X, **kwargs):
        '''
        Sanitize input predictors and extract column names if appropriate.
        '''
        # Check for sparseness
        if sparse.issparse(X):
            raise TypeError('A sparse matrix was passed, but dense data '
                            'is required. Use X.toarray() to convert to dense.')

        # Convert to internally used data type
        X = np.asarray(X, dtype=np.float64, order='F')
        assert_all_finite(X)
        if X.ndim == 1:
            X = X[:, np.newaxis]

        # Ensure correct number of columns
        if hasattr(self, 'basis_') and self.basis_ is not None:
            if X.shape[1] != self.basis_.num_variables:
                raise ValueError('Wrong number of columns in X')

        return X
开发者ID:Biodun,项目名称:py-earth,代码行数:21,代码来源:earth.py


示例20: _base_estimator_predict

    def _base_estimator_predict(self, e, X):
        """Predict label values with the specified estimator on predictor(s) X.

        Parameters
        ----------
        e : int
            The estimator object.

        X : np.ndarray, shape=(n, m)
            The feature data for which to compute the predicted outputs.

        Returns
        -------
        pred : np.ndarray, shape=(len(X), 1)
            The mean of the label probabilities predicted by the specified 
            estimator for each fold for each instance X.
        """
        # Generate array for the base-level testing set, which is n x n_folds.
        pred = e.predict(X)
        assert_all_finite(pred)
        return pred
开发者ID:EdwardBetts,项目名称:awesome-kagg-ml,代码行数:21,代码来源:Stack.py



注:本文中的sklearn.utils.validation.assert_all_finite函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python validation.check_X_y函数代码示例发布时间:2022-05-27
下一篇:
Python validation._num_samples函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap