• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python validation.check_X_y函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.utils.validation.check_X_y函数的典型用法代码示例。如果您正苦于以下问题:Python check_X_y函数的具体用法?Python check_X_y怎么用?Python check_X_y使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了check_X_y函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: self_tune

	def self_tune(self, X, y, verbose=False):
		# fix random seed for reproducibility
		seed = 5
		np.random.seed(seed)

		# define k-fold cross validation test harness
		kfold = StratifiedKFold(y=y, n_folds=self.tuning_csp_num_folds, shuffle=True, random_state=seed)

		# init scores
		cvscores = {}
		for i in xrange(1,self.num_spatial_filters):
			cvscores[i+1] = 0

		for i, (train, test) in enumerate(kfold):
			# calculate CSP spatial filters
			csp = CSP(n_components=self.num_spatial_filters)
			csp.fit(X[train], y[train])

			# try all filters, from the given num down to 2
			# (1 is too often found to be overfitting)
			for j in xrange(2,self.num_spatial_filters):
				num_filters_to_try = j

				# calculate spatial filters
				csp.n_components = num_filters_to_try
				# apply CSP filters to train data
				tuning_train_LDA_features = csp.transform(X[train])
				np.nan_to_num(tuning_train_LDA_features)
				check_X_y(tuning_train_LDA_features, y[train])

				# apply CSP filters to test data
				tuning_test_LDA_features = csp.transform(X[test])
				np.nan_to_num(tuning_test_LDA_features)
				check_X_y(tuning_test_LDA_features, y[test])


				# train LDA
				lda = LinearDiscriminantAnalysis()
				prediction_score = lda.fit(tuning_train_LDA_features, y[train]).score(tuning_test_LDA_features, y[test])

				cvscores[num_filters_to_try] += prediction_score

				if verbose:
					print "prediction score", prediction_score, "with",num_filters_to_try,"spatial filters"

		best_num = max(cvscores, key=cvscores.get)
		best_score = cvscores[best_num] / i+1
		if verbose:
			print "best num filters:", best_num, "(average accuracy ",best_score,")"
			print "average scores per filter num:"
			for k in cvscores:
				print k,":", cvscores[k]/i+1

		return [best_num, best_score]
开发者ID:octopicorn,项目名称:bcikit,代码行数:54,代码来源:offline_analysis_grid.py


示例2: fit

  def fit(self, X, y, random_state=np.random):
    """Create constraints from labels and learn the LSML model.

    Parameters
    ----------
    X : (n x d) matrix
        Input data, where each row corresponds to a single instance.

    y : (n) array-like
        Data labels.

    random_state : numpy.random.RandomState, optional
        If provided, controls random number generation.
    """
    X, y = check_X_y(X, y)
    num_constraints = self.num_constraints
    if num_constraints is None:
      num_classes = len(np.unique(y))
      num_constraints = 20 * num_classes**2

    c = Constraints.random_subset(y, self.num_labeled,
                                  random_state=random_state)
    pairs = c.positive_negative_pairs(num_constraints, same_length=True,
                                      random_state=random_state)
    return LSML.fit(self, X, pairs, weights=self.weights)
开发者ID:svecon,项目名称:metric-learn,代码行数:25,代码来源:lsml.py


示例3: fit

 def fit(self, X, y):
     # Convert data
     X, y = check_X_y(X, y,
                      accept_sparse=("csr", "csc"),
                      multi_output=True,
                      y_numeric=True)
     return self
开发者ID:ZIP97,项目名称:scikit-learn,代码行数:7,代码来源:test_estimator_checks.py


示例4: fit

  def fit(self, X, y):
    """
    X: data matrix, (n x d)
    y: scalar labels, (n)
    """
    X, labels = check_X_y(X, y)
    n, d = X.shape
    num_dims = self.num_dims
    if num_dims is None:
        num_dims = d
    # Initialize A to a scaling matrix
    A = np.zeros((num_dims, d))
    np.fill_diagonal(A, 1./(np.maximum(X.max(axis=0)-X.min(axis=0), EPS)))

    # Run NCA
    dX = X[:,None] - X[None]  # shape (n, n, d)
    tmp = np.einsum('...i,...j->...ij', dX, dX)  # shape (n, n, d, d)
    masks = labels[:,None] == labels[None]
    for it in xrange(self.max_iter):
      for i, label in enumerate(labels):
        mask = masks[i]
        Ax = A.dot(X.T).T  # shape (n, num_dims)

        softmax = np.exp(-((Ax[i] - Ax)**2).sum(axis=1))  # shape (n)
        softmax[i] = 0
        softmax /= softmax.sum()

        t = softmax[:, None, None] * tmp[i]  # shape (n, d, d)
        d = softmax[mask].sum() * t.sum(axis=0) - t[mask].sum(axis=0)
        A += self.learning_rate * A.dot(d)

    self.X_ = X
    self.A_ = A
    self.n_iter_ = it
    return self
开发者ID:svecon,项目名称:metric-learn,代码行数:35,代码来源:nca.py


示例5: reduce_data

    def reduce_data(self, X, y):
        
        X, y = check_X_y(X, y, accept_sparse="csr")

        if self.classifier == None:
            self.classifier = KNeighborsClassifier(n_neighbors=self.n_neighbors)

        prots_s = []
        labels_s = []

        classes = np.unique(y)
        self.classes_ = classes

        for cur_class in classes:
            mask = y == cur_class
            insts = X[mask]
            prots_s = prots_s + [insts[np.random.randint(0, insts.shape[0])]]
            labels_s = labels_s + [cur_class]


        self.classifier.fit(prots_s, labels_s)
        for sample, label in zip(X, y):
            if self.classifier.predict(sample) != [label]:
                prots_s = prots_s + [sample]
                labels_s = labels_s + [label]
                self.classifier.fit(prots_s, labels_s)
       
        self.X_ = np.asarray(prots_s)
        self.y_ = np.asarray(labels_s)
        self.reduction_ = 1.0 - float(len(self.y_))/len(y)
        return self.X_, self.y_
开发者ID:antonlarin,项目名称:scikit-protopy,代码行数:31,代码来源:cnn.py


示例6: setUp

    def setUp(self):
        # Define data file and read X and y
        # Generate some data if the source data is missing
        this_directory = path.abspath(path.dirname(__file__))
        mat_file = 'pima.mat'
        try:
            mat = loadmat(path.join(*[this_directory, 'data', mat_file]))

        except TypeError:
            print('{data_file} does not exist. Use generated data'.format(
                data_file=mat_file))
            X, y = generate_data(train_only=True)  # load data
        except IOError:
            print('{data_file} does not exist. Use generated data'.format(
                data_file=mat_file))
            X, y = generate_data(train_only=True)  # load data
        else:
            X = mat['X']
            y = mat['y'].ravel()
            X, y = check_X_y(X, y)

        self.X_train, self.X_test, self.y_train, self.y_test = \
            train_test_split(X, y, test_size=0.4, random_state=42)

        self.clf = XGBOD(random_state=42)
        self.clf.fit(self.X_train, self.y_train)

        self.roc_floor = 0.8
开发者ID:flaviassantos,项目名称:pyod,代码行数:28,代码来源:test_xgbod.py


示例7: reduce_data

    def reduce_data(self, X, y):
        X, y = check_X_y(X, y, accept_sparse="csr")

        if self.classifier == None:
            self.classifier = KNeighborsClassifier(n_neighbors=self.n_neighbors)
        if self.classifier.n_neighbors != self.n_neighbors:
            self.classifier.n_neighbors = self.n_neighbors

        classes = np.unique(y)
        self.classes_ = classes

        # loading inicial groups
        self.groups = []
        for label in classes:
            mask = y == label
            self.groups = self.groups + [_Group(X[mask], label)]

        self._main_loop()
        self._generalization_step()
        self._merge()
        self._pruning()
        self.X_ = np.asarray([g.rep_x for g in self.groups])
        self.y_ = np.asarray([g.label for g in self.groups])
        self.reduction_ = 1.0 - float(len(self.y_))/len(y)
        return self.X_, self.y_
开发者ID:antonlarin,项目名称:scikit-protopy,代码行数:25,代码来源:sgp.py


示例8: reduce_data

    def reduce_data(self, X, y):
        if self.classifier == None:
            self.classifier = KNeighborsClassifier(n_neighbors=self.n_neighbors)
        if self.classifier.n_neighbors != self.n_neighbors:
            self.classifier.n_neighbors = self.n_neighbors

        X, y = check_X_y(X, y, accept_sparse="csr")

        classes = np.unique(y)
        self.classes_ = classes

        if self.n_neighbors >= len(X):
            self.X_ = np.array(X)
            self.y_ = np.array(y)
            self.reduction_ = 0.0
            return self.X_, self.y_

        mask = np.zeros(y.size, dtype=bool)

        tmp_m = np.ones(y.size, dtype=bool)
        for i in xrange(y.size):
            tmp_m[i] = not tmp_m[i]
            self.classifier.fit(X[tmp_m], y[tmp_m])
            sample, label = X[i], y[i]

            if self.classifier.predict(sample) == [label]:
                mask[i] = not mask[i]

            tmp_m[i] = not tmp_m[i]

        self.X_ = np.asarray(X[mask])
        self.y_ = np.asarray(y[mask])
        self.reduction_ = 1.0 - float(len(self.y_)) / len(y)
        return self.X_, self.y_
开发者ID:antonlarin,项目名称:scikit-protopy,代码行数:34,代码来源:enn.py


示例9: fit

    def fit(self, X, y):
        '''Fit the model.

        Parameters
        ----------
        X : (n, d) array-like
            Input data.

        y : (n,) array-like
            Class labels, one per point of data.
        '''
        X, y = check_X_y(X, y)

        # Inject parameters into all fitness functions
        for f in self._fitness:
            f.inject_params(
                random_state=self.random_state,
            )

        # Inject parameters into Strategy
        self._strategy.inject_params(
            n_dim=self._transformer.individual_size(X.shape[1]),
            fitness=self._fitness,
            transformer=self._transformer,
            random_state=self.random_state,
            verbose=self.verbose,
        )

        # transformer functions using strategy by optimising _fitnesses
        self._strategy.fit(X, y)

        # Fit (fill) transformer with the weights from the best individual
        self._transformer.fit(X, y, self._strategy.best_individual())
        return self
开发者ID:svecon,项目名称:metric-learn,代码行数:34,代码来源:evolution.py


示例10: threshold_fit

def threshold_fit(X, y, alpha, n_class, mode='AE',
                  max_iter=1000, verbose=False, tol=1e-12):
    """
    Solve the general threshold-based ordinal regression model
    using the logistic loss as surrogate of the 0-1 loss

    Parameters
    ----------
    mode : string, one of {'AE', '0-1'}

    """

    X, y = check_X_y(X, y, accept_sparse='csr')
    unique_y = np.sort(np.unique(y))
    if not np.all(unique_y == np.arange(unique_y.size)):
        raise ValueError(
            'Values in y must be %s, got instead %s'
            % (unique_y, np.arange(unique_y.size)))
    y = np.asarray(y)  # XXX check its made of integers
    n_samples, n_features = X.shape

    # convert from c to theta
    L = np.zeros((n_class - 1, n_class - 1))
    L[np.tril_indices(n_class-1)] = 1.

    if mode == 'AE':
        # loss forward difference
        loss_fd = np.ones((n_class, n_class - 1))
    elif mode == '0-1':
        loss_fd = np.diag(np.ones(n_class - 1)) + \
            np.diag(np.ones(n_class - 2), k=-1)
        loss_fd = np.vstack((loss_fd, np.zeros(n_class - 1)))
        loss_fd[-1, -1] = 1  # border case
    elif mode == 'SE':
        a = np.arange(n_class-1)
        b = np.arange(n_class)
        loss_fd = np.abs((a - b[:, None])**2 - (a - b[:, None]+1)**2)
    else:
        raise NotImplementedError

    x0 = np.zeros(n_features + n_class - 1)
    x0[X.shape[1]:] = np.arange(n_class - 1)
    options = {'maxiter' : max_iter, 'disp': verbose}
    if n_class > 2:
        bounds = [(None, None)] * (n_features + 1) + \
                 [(0, None)] * (n_class - 3) + [(1, 1)]
        bounds = [(None, None)] * (n_features + 1) + \
                 [(0, None)] * (n_class - 2)
    else:
        bounds = None
    sol = optimize.minimize(obj_margin, x0, method='L-BFGS-B',
        jac=grad_margin, args=(X, y, alpha, n_class, loss_fd, L),
        bounds=bounds, options=options, tol=tol)
    if not sol.success:
        print(sol.message)
    print(sol.message)
    w, c = sol.x[:X.shape[1]], sol.x[X.shape[1]:]
    theta = L.dot(c)
    return w, theta
开发者ID:ancache,项目名称:mord,代码行数:59,代码来源:threshold_based.py


示例11: fit

    def fit(self, X, y, sample_weight=None):
        # Convert data
        X, y = check_X_y(X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True)
        # Function is only called after we verify that pandas is installed
        from pandas import Series

        if isinstance(sample_weight, Series):
            raise ValueError("Estimator does not accept 'sample_weight'" "of type pandas.Series")
        return self
开发者ID:nelson-liu,项目名称:scikit-learn,代码行数:9,代码来源:test_estimator_checks.py


示例12: check_X_y

    def check_X_y(self, X, y):
        from sklearn.utils.validation import check_X_y

        if X.shape[0] > self.max_train_size_:
            raise Exception("X_train size cannot exceed {} ({})"
                            .format(self.max_train_size_, X.shape[0]))
        return check_X_y(X, y, multi_output=True,
                         allow_nd=True, y_numeric=True,
                         estimator="GPRNP")
开发者ID:FullStackHan,项目名称:ottertune,代码行数:9,代码来源:gp.py


示例13: fit

    def fit(self, X, y, sample_weight=None):
        """
        Build a classifier from the training set (X, y).

        Parameters
        ----------
        X : array-like or sparse matrix of shape = [n_samples, n_features]
            The training input samples.

        y : array-like, shape = [n_samples]
            The target values (class labels in classification).

        sample_weight : array-like, shape = [n_samples] or None
            Individual weights for each sample.

        Returns
        -------
        self : object
            Returns self.
        """
        self._validate_params(**self.get_params())

        X, y = check_X_y(X, y, accept_sparse=True)
        if sp.isspmatrix(X):
            self._is_sparse_train_X = True
        else:
            self._is_sparse_train_X = False
        self._n_samples, self._n_features = X.shape
        sample_weight = self._get_sample_weight(sample_weight)
        check_consistent_length(X, y, sample_weight)
        check_classification_targets(y)
        self._classes = sorted(np.unique(y))
        self._n_classes = len(self._classes)
        self._classes_map = {}

        self._set_params_with_dependencies()
        params = self._get_params()

        if self._n_classes == 2:
            self._classes_map[0] = self._classes[0]
            self._classes_map[1] = self._classes[1]
            self._estimators = [None]
            y = (y == self._classes[0]).astype(int)
            self._fit_binary_task(X, y, sample_weight, params)
        elif self._n_classes > 2:
            if sp.isspmatrix_dok(X):
                X = X.tocsr().tocoo()  # Fix to avoid scipy 7699 issue
            self._estimators = [None] * self._n_classes
            self._fit_multiclass_task(X, y, sample_weight, params)
        else:
            raise ValueError("Classifier can't predict when only one class is present.")

        self._fitted = True

        return self
开发者ID:fukatani,项目名称:rgf_python,代码行数:55,代码来源:utils.py


示例14: fit

    def fit(self, X, y):
        # Check data
        X, y = np.array(X), np.array(y)
        X, y = check_X_y(X, y)
        # Split to grow cascade and validate
        mask = np.random.random(y.shape[0]) < self.validation_fraction
        X_tr, X_vl = X[mask], X[~mask]
        y_tr, y_vl = y[mask], y[~mask]

        self.classes_ = unique_labels(y)
        self.layers_, inp_tr, inp_vl = [], X_tr, X_vl
        self.scores_ = []

        # First layer
        forests = [RandomForestClassifier(max_features=1, n_estimators=self.n_estimators, min_samples_split=10, criterion='gini', n_jobs=-1),  # Complete random
                    RandomForestClassifier(max_features=1, n_estimators=self.n_estimators, min_samples_split=10, criterion='gini', n_jobs=-1),  # Complete random
                    RandomForestClassifier(n_estimators=self.n_estimators, n_jobs=-1),
                    RandomForestClassifier(n_estimators=self.n_estimators, n_jobs=-1)]
        _ = [f.fit(inp_tr, y_tr) for f in forests]
        p_vl = [f.predict_proba(inp_vl) for f in forests]
        labels = [self.classes_[i] for i in np.argmax(np.array(p_vl).mean(axis=0), axis=1)]
        score = self.scoring(y_vl, labels)
        self.layers_.append(forests)
        self.scores_.append(score)
        p_tr = [cross_val_predict(f, inp_tr, y_tr, cv=self.cv, method='predict_proba') for f in forests]

        # Fit other layers
        last_score = score
        inp_tr, inp_vl = np.concatenate([X_tr]+p_tr, axis=1), np.concatenate([X_vl]+p_vl, axis=1)
        while True:  # Grow cascade
            forests = [RandomForestClassifier(max_features=1, n_estimators=self.n_estimators, min_samples_split=10, criterion='gini', n_jobs=-1),  # Complete random
                    RandomForestClassifier(max_features=1, n_estimators=self.n_estimators, min_samples_split=10, criterion='gini', n_jobs=-1),  # Complete random
                    RandomForestClassifier(n_estimators=self.n_estimators, n_jobs=-1),
                    RandomForestClassifier(n_estimators=self.n_estimators, n_jobs=-1)]
            _ = [forest.fit(inp_tr, y_tr) for forest in forests] # Fit the forest
            p_vl = [forest.predict_proba(inp_vl) for forest in forests]
            labels = [self.classes_[i] for i in np.argmax(np.array(p_vl).mean(axis=0), axis=1)]
            score = self.scoring(y_vl, labels)

            if score - last_score > self.tolerance:
                self.layers_.append(forests)
                p_tr = [cross_val_predict(f, inp_tr, y_tr, cv=self.cv, method='predict_proba') for f in forests]
                inp_tr, inp_vl = np.concatenate([X_tr]+p_tr, axis=1), np.concatenate([X_vl]+p_vl, axis=1)
                self.scores_.append(score)
                last_score = score
                print(self.scores_)
            else:
                break
        # Retrain on entire dataset
        inp_ = X
        for forests in self.layers_:
            _ = [f.fit(inp_, y) for f in forests]
            p = [cross_val_predict(f, inp_, y, cv=self.cv, method='predict_proba') for f in forests]
            inp_ = np.concatenate([X]+p, axis=1)
        return self
开发者ID:sig-ml,项目名称:bleedml,代码行数:55,代码来源:classifiers.py


示例15: fit

    def fit(self, X, y):
        check_X_y(X, y, accept_sparse=['csc', 'csr', 'coo', 'dok',
                        'bsr', 'lil', 'dia'])
        check_array(X, accept_sparse=['csc', 'csr', 'coo', 'dok',
                        'bsr', 'lil', 'dia'])
        self.X_ = X
        check_classification_targets(y)
        classes = np.nonzero(y)

        n_samples, n_classes = len(y), len(classes)
        # create diagonal matrix of degree of nodes
        if sparse.isspmatrix(self.X_):
            B_ = self.X_.copy().astype(np.float)
            D = np.array(csr_matrix.sum(self.X_, axis=1), dtype=np.float).T[0]
        else:
            B_ = np.copy(self.X_).astype(np.float)
            D = np.array(np.sum(self.X_, axis=1), dtype=np.float)

        # if  (- self.sigma) and (self.sigma - 1) doesn't equals we have different diagonal matrix at the left and right sides
        if (- self.sigma) == (self.sigma - 1):
            D_left = D_right = np.power(D, - self.sigma)
        else:
            D_left = np.power(D, - self.sigma)
            D_right = np.power(self.sigma - 1)

        # M_ = D_left.dot(B_)
        for i, d in enumerate(D_left):
            B_[i, :] *= d
        # B_ = M_.dot(D_right)
        for i, d in enumerate(D_right):
            B_[:, i] *= d
        # create labeled data Z
        dimension = (n_samples, n_classes)
        labels = np.nonzero(y)
        ans_y = np.zeros(dimension)
        for l in labels[0]:
            ans_y[l][y[l] - 1] = 1

        Z_ = (self.sigma / (1 + self.sigma)) * ans_y
        self.initial_vector_ = np.ones(dimension) / n_classes
        self._get_method_(B_, Z_)
        return self
开发者ID:KamalovMikhail,项目名称:semi_supervise,代码行数:42,代码来源:graph_base_semi_supervise.py


示例16: fit

    def fit(self, X, y):
        """Fit the RVR to the training data."""
        X, y = check_X_y(X, y)

        n_samples, n_features = X.shape

        self.phi = self._apply_kernel(X, X)

        n_basis_functions = self.phi.shape[1]

        self.relevance_ = X
        self.y = y

        self.alpha_ = self.alpha * np.ones(n_basis_functions)
        self.beta_ = self.beta

        self.m_ = np.zeros(n_basis_functions)

        self.alpha_old = self.alpha_

        for i in range(self.n_iter):
            self._posterior()

            self.gamma = 1 - self.alpha_*np.diag(self.sigma_)
            self.alpha_ = self.gamma/(self.m_ ** 2)

            if not self.beta_fixed:
                self.beta_ = (n_samples - np.sum(self.gamma))/(
                    np.sum((y - np.dot(self.phi, self.m_)) ** 2))

            self._prune()

            if self.verbose:
                print("Iteration: {}".format(i))
                print("Alpha: {}".format(self.alpha_))
                print("Beta: {}".format(self.beta_))
                print("Gamma: {}".format(self.gamma))
                print("m: {}".format(self.m_))
                print("Relevance Vectors: {}".format(self.relevance_.shape[0]))
                print()

            delta = np.amax(np.absolute(self.alpha_ - self.alpha_old))

            if delta < self.tol and i > 1:
                break

            self.alpha_old = self.alpha_

        if self.bias_used:
            self.bias = self.m_[-1]
        else:
            self.bias = None

        return self
开发者ID:SuixueWang,项目名称:scikit-rvm,代码行数:54,代码来源:rvm.py


示例17: path_calc

def path_calc(X, y, X_holdout, y_holdout, alphas, paramgrid, colname = 'CV', yname = '', method = 'Elastic Net'):
    #make a copy of the parameters before popping things off
    copy_params = copy.deepcopy(paramgrid)
    fit_intercept = copy_params.pop('fit_intercept')
    precompute = copy_params.pop('precompute')
    copy_X = copy_params.pop('copy_X')
    normalize = False

    # this code adapted from sklearn ElasticNet fit function, which unfortunately doesn't accept multiple alphas at once
    X, y = check_X_y(X, y, accept_sparse='csc',
                     order='F', dtype=[np.float64, np.float32],
                     copy=copy_X and fit_intercept,
                     multi_output=True, y_numeric=True)
    y = check_array(y, order='F', copy=False, dtype=X.dtype.type,
                    ensure_2d=False)

    #this is the step that gives the data to find intercept if fit_intercept is true.
    X, y, X_offset, y_offset, X_scale, precompute, Xy = _pre_fit(X, y, None, precompute, normalize,
                                                                 fit_intercept, copy=False)
    y = np.squeeze(y)

    #do the path calculation, and tell how long it took
    print('Calculating path...')
    start_t = time.time()
    if method == 'Elastic Net':
        path_alphas, path_coefs, path_gaps, path_iters = enet_path(X, y, alphas=alphas, return_n_iter = True,
                                                   **copy_params)
    if method == 'LASSO':
        path_alphas, path_coefs, path_gaps, path_iters = lasso_path(X, y, alphas=alphas, return_n_iter=True,
                                                                   **copy_params)
    dt = time.time() - start_t
    print('Took ' + str(dt) + ' seconds')

    #create some empty arrays to store the result
    y_pred_holdouts = np.empty(shape=(len(alphas),len(y_holdout)))
    intercepts = np.empty(shape=(len(alphas)))
    rmses = np.empty(shape=(len(alphas)))
    cvcols = []
    for j in list(range(len(path_alphas))):

        coef_temp = path_coefs[:, j]

        if fit_intercept:
            coef_temp = coef_temp / X_scale
            intercept = y_offset - np.dot(X_offset, coef_temp.T)
        else:
            intercept = 0.

        y_pred_holdouts[j,:] = np.dot(X_holdout, path_coefs[:, j]) + intercept
        intercepts[j] = intercept
        rmses[j] = RMSE(y_pred_holdouts[j,:], y_holdout)
        cvcols.append(('predict','"'+ method + ' - ' + yname + ' - ' + colname + ' - Alpha:' + str(path_alphas[j]) + ' - ' + str(paramgrid) + '"'))

    return path_alphas, path_coefs, intercepts, path_iters, y_pred_holdouts, rmses, cvcols
开发者ID:USGS-Astrogeology,项目名称:PySAT,代码行数:54,代码来源:cv.py


示例18: fit

    def fit(self, x, y):
        # y = y.values
        x, y = check_X_y(x, y, accept_sparse=True)

        def pr(x, y_i, y):
            p = x[y==y_i].sum(0)
            return (p+1) / ((y==y_i).sum()+1)

        self._r = sparse.csr_matrix(np.log(pr(x,1,y) / pr(x,0,y)))
        x_nb = x.multiply(self._r)
        self._clf = LogisticRegression(C=self.C, dual=self.dual, n_jobs=self.n_jobs).fit(x_nb, y)
        return self
开发者ID:xiabofei,项目名称:python_details,代码行数:12,代码来源:model_nbsvm.py


示例19: fit

    def fit(self, X, y):
        """Fit Gaussian process classification model

        Parameters
        ----------
        X : array-like, shape = (n_samples, n_features)
            Training data

        y : array-like, shape = (n_samples,)
            Target values, must be binary

        Returns
        -------
        self : returns an instance of self.
        """
        X, y = check_X_y(X, y, multi_output=False)

        self.base_estimator_ = _BinaryGaussianProcessClassifierLaplace(
            self.kernel, self.optimizer, self.n_restarts_optimizer,
            self.max_iter_predict, self.warm_start, self.copy_X_train,
            self.random_state)

        self.classes_ = np.unique(y)
        self.n_classes_ = self.classes_.size
        if self.n_classes_ == 1:
            raise ValueError("GaussianProcessClassifier requires 2 or more "
                             "distinct classes; got %d class (only class %s "
                             "is present)"
                             % (self.n_classes_, self.classes_[0]))
        if self.n_classes_ > 2:
            if self.multi_class == "one_vs_rest":
                self.base_estimator_ = \
                    OneVsRestClassifier(self.base_estimator_,
                                        n_jobs=self.n_jobs)
            elif self.multi_class == "one_vs_one":
                self.base_estimator_ = \
                    OneVsOneClassifier(self.base_estimator_,
                                       n_jobs=self.n_jobs)
            else:
                raise ValueError("Unknown multi-class mode %s"
                                 % self.multi_class)

        self.base_estimator_.fit(X, y)

        if self.n_classes_ > 2:
            self.log_marginal_likelihood_value_ = np.mean(
                [estimator.log_marginal_likelihood()
                 for estimator in self.base_estimator_.estimators_])
        else:
            self.log_marginal_likelihood_value_ = \
                self.base_estimator_.log_marginal_likelihood()

        return self
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:53,代码来源:gpc.py


示例20: fit

 def fit(self, X, y):
     X, y = check_X_y(X, y)
     self.classes_ = unique_labels(y)
     self.X_ = DynamicBayesianClassifier._first_col(X)
     self.y_ = y
     self.size_ = self.X_.size
     for i in range(self.X_.size):
         if y[i] not in self.dbayesmode_major_.keys():
             self.dbayesmode_major_[y[i]] = scalgoutil.DBayesMode(y[i])
         self.dbayesmode_major_[y[i]].update(self.X_[i])
         self.update_priors()
     return self
开发者ID:KeyboardNerd,项目名称:PredictiveServer,代码行数:12,代码来源:scestimator.py



注:本文中的sklearn.utils.validation.check_X_y函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python validation.check_array函数代码示例发布时间:2022-05-27
下一篇:
Python validation.assert_all_finite函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap