本文整理汇总了Python中skll.learner.Learner类的典型用法代码示例。如果您正苦于以下问题:Python Learner类的具体用法?Python Learner怎么用?Python Learner使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Learner类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_predict_on_subset_with_existing_model
def test_predict_on_subset_with_existing_model():
"""
Test generating predictions on subset with existing model
"""
# Create data files
make_single_file_featureset_data()
# train and save a model on the training file
train_fs = NDJReader.for_path(join(_my_dir, 'train', 'train_single_file.jsonlines')).read()
learner = Learner('RandomForestClassifier')
learner.train(train_fs, grid_search=True, grid_objective="accuracy")
model_filename = join(_my_dir, 'output', ('train_test_single_file_train_train_'
'single_file.jsonlines_test_test_single'
'_file_subset.jsonlines_RandomForestClassifier'
'.model'))
learner.save(model_filename)
# Run experiment
config_path = fill_in_config_paths_for_single_file(join(_my_dir, "configs",
"test_single_file_saved_subset"
".template.cfg"),
join(_my_dir, 'train', 'train_single_file.jsonlines'),
join(_my_dir, 'test',
'test_single_file_subset.'
'jsonlines'))
run_configuration(config_path, quiet=True, overwrite=False)
# Check results
with open(join(_my_dir, 'output', ('train_test_single_file_train_train_'
'single_file.jsonlines_test_test_single'
'_file_subset.jsonlines_RandomForestClassifier'
'.results.json'))) as f:
result_dict = json.load(f)[0]
assert_almost_equal(result_dict['accuracy'], 0.7333333)
开发者ID:EducationalTestingService,项目名称:skll,代码行数:35,代码来源:test_classification.py
示例2: check_specified_cv_folds
def check_specified_cv_folds(numeric_ids):
make_cv_folds_data(numeric_ids)
# test_cv_folds1.cfg has prespecified folds and should have ~50% accuracy
# test_cv_folds2.cfg doesn't have prespecified folds and >95% accuracy
for experiment_name, test_func, grid_size in [('test_cv_folds1',
lambda x: x < 0.6,
3),
('test_cv_folds2',
lambda x: x > 0.95,
10)]:
config_template_file = '{}.template.cfg'.format(experiment_name)
config_template_path = os.path.join(_my_dir, 'configs',
config_template_file)
config_path = os.path.join(_my_dir,
fill_in_config_paths(config_template_path))
# Modify config file to change ids_to_floats depending on numeric_ids
# setting
with open(config_path, 'r+') as config_template_file:
lines = config_template_file.readlines()
config_template_file.seek(0)
config_template_file.truncate()
for line in lines:
if line.startswith('ids_to_floats='):
if numeric_ids:
line = 'ids_to_floats=true\n'
else:
line = 'ids_to_floats=false\n'
config_template_file.write(line)
run_configuration(config_path, quiet=True)
result_filename = ('{}_test_cv_folds_LogisticRegression.' +
'results').format(experiment_name)
with open(os.path.join(_my_dir, 'output', result_filename)) as f:
# check held out scores
outstr = f.read()
score = float(SCORE_OUTPUT_RE.search(outstr).groups()[-1])
assert test_func(score)
grid_score_matches = GRID_RE.findall(outstr)
assert len(grid_score_matches) == grid_size
for match_str in grid_score_matches:
assert test_func(float(match_str))
# try the same tests for just training (and specifying the folds for the
# grid search)
dirpath = os.path.join(_my_dir, 'train')
suffix = '.jsonlines'
featureset = ['test_cv_folds']
examples = _load_featureset(dirpath, featureset, suffix, quiet=True)
clf = Learner('LogisticRegression', probability=True)
cv_folds = _load_cv_folds(os.path.join(_my_dir, 'train',
'test_cv_folds.csv'))
grid_search_score = clf.train(examples, grid_search_folds=cv_folds,
grid_objective='accuracy', grid_jobs=1)
assert grid_search_score < 0.6
grid_search_score = clf.train(examples, grid_search_folds=5,
grid_objective='accuracy', grid_jobs=1)
assert grid_search_score > 0.95
开发者ID:wavelets,项目名称:skll,代码行数:60,代码来源:test_skll.py
示例3: check_train_and_score_function
def check_train_and_score_function(model_type):
"""
Check that the _train_and_score() function works as expected
"""
# create train and test data
(train_fs,
test_fs) = make_classification_data(num_examples=500,
train_test_ratio=0.7,
num_features=5,
use_feature_hashing=False,
non_negative=True)
# call _train_and_score() on this data
estimator_name = 'LogisticRegression' if model_type == 'classifier' else 'Ridge'
metric = 'accuracy' if model_type == 'classifier' else 'pearson'
learner1 = Learner(estimator_name)
train_score1, test_score1 = _train_and_score(learner1, train_fs, test_fs, metric)
# this should yield identical results when training another instance
# of the same learner without grid search and shuffling and evaluating
# that instance on the train and the test set
learner2 = Learner(estimator_name)
learner2.train(train_fs, grid_search=False, shuffle=False)
train_score2 = learner2.evaluate(train_fs, output_metrics=[metric])[-1][metric]
test_score2 = learner2.evaluate(test_fs, output_metrics=[metric])[-1][metric]
eq_(train_score1, train_score2)
eq_(test_score1, test_score2)
开发者ID:EducationalTestingService,项目名称:skll,代码行数:29,代码来源:test_classification.py
示例4: check_scaling_features
def check_scaling_features(use_feature_hashing=False, use_scaling=False):
train_fs, test_fs = make_scaling_data(
use_feature_hashing=use_feature_hashing)
# create a Linear SVM with the value of scaling as specified
feature_scaling = 'both' if use_scaling else 'none'
learner = Learner('SGDClassifier', feature_scaling=feature_scaling,
pos_label_str=1)
# train the learner on the training set and test on the testing set
learner.train(train_fs)
test_output = learner.evaluate(test_fs)
fmeasures = [test_output[2][0]['F-measure'],
test_output[2][1]['F-measure']]
# these are the expected values of the f-measures, sorted
if not use_feature_hashing:
expected_fmeasures = ([0.7979797979797979, 0.80198019801980192] if
not use_scaling else
[0.94883720930232551, 0.94054054054054048])
else:
expected_fmeasures = ([0.83962264150943389, 0.81914893617021278] if
not use_scaling else
[0.88038277511961716, 0.86910994764397898])
assert_almost_equal(expected_fmeasures, fmeasures)
开发者ID:MechCoder,项目名称:skll,代码行数:26,代码来源:test_preprocessing.py
示例5: check_scaling_features
def check_scaling_features(use_feature_hashing=False, use_scaling=False):
train_fs, test_fs = make_scaling_data(use_feature_hashing=use_feature_hashing)
# create a Linear SVM with the value of scaling as specified
feature_scaling = 'both' if use_scaling else 'none'
learner = Learner('SGDClassifier', feature_scaling=feature_scaling,
pos_label_str=1)
# train the learner on the training set and test on the testing set
learner.train(train_fs)
test_output = learner.evaluate(test_fs)
fmeasures = [test_output[2][0]['F-measure'],
test_output[2][1]['F-measure']]
# these are the expected values of the f-measures, sorted
if not use_feature_hashing:
expected_fmeasures = ([0.77319587628865982, 0.78640776699029125] if
not use_scaling else
[0.94930875576036866, 0.93989071038251359])
else:
expected_fmeasures = ([0.42774566473988435, 0.5638766519823788] if
not use_scaling else
[0.87323943661971837, 0.85561497326203206])
assert_almost_equal(expected_fmeasures, fmeasures)
开发者ID:BK-University,项目名称:skll,代码行数:25,代码来源:test_preprocessing.py
示例6: check_tree_models
def check_tree_models(name,
use_feature_hashing=False,
use_rescaling=False):
# create a FeatureSet object with the data we want to use
if use_feature_hashing:
train_fs, test_fs, _ = make_regression_data(num_examples=5000,
num_features=10,
use_feature_hashing=True,
feature_bins=5)
else:
train_fs, test_fs, _ = make_regression_data(num_examples=2000,
num_features=3)
# create the learner
if use_rescaling:
name = 'Rescaled' + name
learner = Learner(name)
# train it with the training feature set we created
# make sure to set the grid objective to pearson
learner.train(train_fs, grid_objective='pearson')
# make sure that the feature importances are as expected.
if name.endswith('DecisionTreeRegressor'):
expected_feature_importances = ([0.37331461,
0.08572699,
0.2543484,
0.1841172,
0.1024928] if use_feature_hashing else
[0.08931994,
0.15545093,
0.75522913])
expected_cor_range = [0.5, 0.6] if use_feature_hashing else [0.9, 1.0]
else:
if use_feature_hashing:
expected_feature_importances = [0.40195655,
0.06702161,
0.25814858,
0.18183947,
0.09103379]
else:
expected_feature_importances = [0.07975691, 0.16122862, 0.75901447]
expected_cor_range = [0.7, 0.8] if use_feature_hashing else [0.9, 1.0]
feature_importances = learner.model.feature_importances_
assert_allclose(feature_importances, expected_feature_importances,
rtol=1e-2)
# now generate the predictions on the test FeatureSet
predictions = learner.predict(test_fs)
# now make sure that the predictions are close to
# the actual test FeatureSet labels that we generated
# using make_regression_data. To do this, we just
# make sure that they are correlated with pearson > 0.95
cor, _ = pearsonr(predictions, test_fs.labels)
assert_greater(cor, expected_cor_range[0])
assert_less(cor, expected_cor_range[1])
开发者ID:MechCoder,项目名称:skll,代码行数:59,代码来源:test_regression.py
示例7: check_tree_models
def check_tree_models(name,
use_feature_hashing=False,
use_rescaling=False):
# create a FeatureSet object with the data we want to use
if use_feature_hashing:
train_fs, test_fs, _ = make_regression_data(num_examples=5000,
num_features=10,
use_feature_hashing=True,
feature_bins=5)
else:
train_fs, test_fs, _ = make_regression_data(num_examples=2000,
num_features=3)
# create the learner
if use_rescaling:
name = 'Rescaled' + name
learner = Learner(name)
# train it with the training feature set we created
# make sure to set the grid objective to pearson
learner.train(train_fs, grid_objective='pearson')
# make sure that the feature importances are as expected.
if name.endswith('DecisionTreeRegressor'):
expected_feature_importances = ([0.37483895,
0.08816508,
0.25379838,
0.18337128,
0.09982631] if use_feature_hashing else
[0.08926899,
0.15585068,
0.75488033])
expected_cor_range = [0.5, 0.6] if use_feature_hashing else [0.9, 1.0]
else:
expected_feature_importances = ([0.40195798,
0.06702903,
0.25816559,
0.18185518,
0.09099222] if use_feature_hashing else
[0.07974267,
0.16121895,
0.75903838])
expected_cor_range = [0.7, 0.8] if use_feature_hashing else [0.9, 1.0]
feature_importances = learner.model.feature_importances_
assert_allclose(feature_importances, expected_feature_importances,
atol=1e-2, rtol=0)
# now generate the predictions on the test FeatureSet
predictions = learner.predict(test_fs)
# now make sure that the predictions are close to
# the actual test FeatureSet labels that we generated
# using make_regression_data. To do this, we just
# make sure that they are correlated with pearson > 0.95
cor, _ = pearsonr(predictions, test_fs.labels)
assert_greater(cor, expected_cor_range[0])
assert_less(cor, expected_cor_range[1])
开发者ID:ChristianGeng,项目名称:skll,代码行数:59,代码来源:test_regression.py
示例8: test_retrieve_cv_folds
def test_retrieve_cv_folds():
"""
Test to make sure that the fold ids get returned correctly after cross-validation
"""
# Setup
learner = Learner('LogisticRegression')
num_folds = 5
cv_fs, custom_cv_folds = make_cv_folds_data(num_examples_per_fold=2, num_folds=num_folds)
# Test 1: learner.cross_validate() makes the folds itself.
expected_fold_ids = {'EXAMPLE_0': '0',
'EXAMPLE_1': '4',
'EXAMPLE_2': '3',
'EXAMPLE_3': '1',
'EXAMPLE_4': '2',
'EXAMPLE_5': '2',
'EXAMPLE_6': '1',
'EXAMPLE_7': '0',
'EXAMPLE_8': '4',
'EXAMPLE_9': '3'}
_, _, _, skll_fold_ids = learner.cross_validate(cv_fs,
stratified=True,
cv_folds=num_folds,
grid_search=True,
grid_objective='f1_score_micro',
shuffle=False,
save_cv_folds=True)
assert_equal(skll_fold_ids, expected_fold_ids)
# Test 2: if we pass in custom fold ids, those are also preserved.
_, _, _, skll_fold_ids = learner.cross_validate(cv_fs,
stratified=True,
cv_folds=custom_cv_folds,
grid_search=True,
grid_objective='f1_score_micro',
shuffle=False,
save_cv_folds=True)
assert_equal(skll_fold_ids, custom_cv_folds)
# Test 3: when learner.cross_validate() makes the folds but stratified=False
# and grid_search=False, so that KFold is used.
expected_fold_ids = {'EXAMPLE_0': '0',
'EXAMPLE_1': '0',
'EXAMPLE_2': '1',
'EXAMPLE_3': '1',
'EXAMPLE_4': '2',
'EXAMPLE_5': '2',
'EXAMPLE_6': '3',
'EXAMPLE_7': '3',
'EXAMPLE_8': '4',
'EXAMPLE_9': '4'}
_, _, _, skll_fold_ids = learner.cross_validate(cv_fs,
stratified=False,
cv_folds=num_folds,
grid_search=False,
shuffle=False,
save_cv_folds=True)
assert_equal(skll_fold_ids, custom_cv_folds)
开发者ID:EducationalTestingService,项目名称:skll,代码行数:59,代码来源:test_cv.py
示例9: check_invalid_regr_grid_obj_func
def check_invalid_regr_grid_obj_func(learner_name, grid_objective_function):
"""
Checks whether the grid objective function is valid for this regression
learner
"""
(train_fs, _, _) = make_regression_data()
clf = Learner(learner_name)
clf.train(train_fs, grid_objective=grid_objective_function)
开发者ID:BK-University,项目名称:skll,代码行数:8,代码来源:test_metrics.py
示例10: test_predict_dict_hasher
def test_predict_dict_hasher():
train_file = join(_my_dir, 'other', 'examples_train.jsonlines')
test_file = join(_my_dir, 'other', 'examples_test.jsonlines')
train_fs = NDJReader.for_path(train_file).read()
test_fs = NDJReader.for_path(test_file, feature_hasher=True, num_features=3).read()
learner = Learner('LogisticRegression')
learner.train(train_fs, grid_search=False)
_ = learner.predict(test_fs)
开发者ID:EducationalTestingService,项目名称:skll,代码行数:8,代码来源:test_classification.py
示例11: check_ensemble_models
def check_ensemble_models(name,
use_feature_hashing=False,
use_rescaling=False):
# create a FeatureSet object with the data we want to use
if use_feature_hashing:
train_fs, test_fs, _ = make_regression_data(num_examples=5000,
num_features=10,
use_feature_hashing=True,
feature_bins=5)
else:
train_fs, test_fs, _ = make_regression_data(num_examples=2000,
num_features=3)
# create the learner
if use_rescaling:
name = 'Rescaled' + name
learner = Learner(name)
# train it with the training feature set we created
# make sure to set the grid objective to pearson
learner.train(train_fs, grid_objective='pearson')
# make sure that the feature importances are as expected.
if name.endswith('AdaBoostRegressor'):
if use_feature_hashing:
expected_feature_importances = [0.33718443,
0.07810721,
0.25621769,
0.19489766,
0.13359301]
else:
expected_feature_importances = [0.10266744, 0.18681777, 0.71051479]
else:
expected_feature_importances = ([0.204,
0.172,
0.178,
0.212,
0.234] if use_feature_hashing else
[0.262,
0.288,
0.45])
feature_importances = learner.model.feature_importances_
assert_allclose(feature_importances, expected_feature_importances,
atol=1e-2, rtol=0)
# now generate the predictions on the test FeatureSet
predictions = learner.predict(test_fs)
# now make sure that the predictions are close to
# the actual test FeatureSet labels that we generated
# using make_regression_data. To do this, we just
# make sure that they are correlated with pearson > 0.95
cor, _ = pearsonr(predictions, test_fs.labels)
expected_cor_range = [0.7, 0.8] if use_feature_hashing else [0.9, 1.0]
assert_greater(cor, expected_cor_range[0])
assert_less(cor, expected_cor_range[1])
开发者ID:ChristianGeng,项目名称:skll,代码行数:58,代码来源:test_regression.py
示例12: test_predict_hasher_hasher_same_bins
def test_predict_hasher_hasher_same_bins():
train_file = join(_my_dir, 'other', 'examples_train.jsonlines')
test_file = join(_my_dir, 'other', 'examples_test.jsonlines')
train_fs = NDJReader.for_path(train_file, feature_hasher=True, num_features=3).read()
test_fs = NDJReader.for_path(test_file, feature_hasher=True, num_features=3).read()
learner = Learner('LogisticRegression')
learner.train(train_fs, grid_search=False)
predictions = learner.predict(test_fs)
eq_(len(predictions), test_fs.features.shape[0])
开发者ID:EducationalTestingService,项目名称:skll,代码行数:9,代码来源:test_classification.py
示例13: check_linear_models
def check_linear_models(name,
use_feature_hashing=False,
use_rescaling=False):
# create a FeatureSet object with the data we want to use
if use_feature_hashing:
(train_fs,
test_fs,
weightdict) = make_regression_data(num_examples=5000,
num_features=10,
use_feature_hashing=True,
feature_bins=5)
else:
train_fs, test_fs, weightdict = make_regression_data(num_examples=2000,
num_features=3)
# create the learner
if use_rescaling:
name = 'Rescaled' + name
learner = Learner(name)
# train it with the training feature set we created
# make sure to set the grid objective to pearson
learner.train(train_fs, grid_search=True, grid_objective='pearson')
# make sure that the weights are close to the weights
# that we got from make_regression_data. Take the
# ceiling before comparing since just comparing
# the ceilings should be enough to make sure nothing
# catastrophic happened. However, sometimes with
# feature hashing, the ceiling is not exactly identical
# so when that fails we want to check that the rounded
# feature values are the same. One of those two equalities
# _must_ be satisified.
# get the weights for this trained model
learned_weights = learner.model_params[0]
for feature_name in learned_weights:
learned_w_ceil = math.ceil(learned_weights[feature_name])
given_w_ceil = math.ceil(weightdict[feature_name])
learned_w_round = round(learned_weights[feature_name], 0)
given_w_round = round(weightdict[feature_name], 0)
ceil_equal = learned_w_ceil == given_w_ceil
round_equal = learned_w_round == given_w_round
either_equal = ceil_equal or round_equal
assert either_equal
# now generate the predictions on the test FeatureSet
predictions = learner.predict(test_fs)
# now make sure that the predictions are close to
# the actual test FeatureSet labels that we generated
# using make_regression_data. To do this, we just
# make sure that they are correlated with pearson > 0.95
cor, _ = pearsonr(predictions, test_fs.labels)
assert_greater(cor, 0.95)
开发者ID:EducationalTestingService,项目名称:skll,代码行数:57,代码来源:test_regression.py
示例14: check_ensemble_models
def check_ensemble_models(name,
use_feature_hashing=False,
use_rescaling=False):
# create a FeatureSet object with the data we want to use
if use_feature_hashing:
train_fs, test_fs, _ = make_regression_data(num_examples=5000,
num_features=10,
use_feature_hashing=True,
feature_bins=5)
else:
train_fs, test_fs, _ = make_regression_data(num_examples=2000,
num_features=3)
# create the learner
if use_rescaling:
name = 'Rescaled' + name
learner = Learner(name)
# train it with the training feature set we created
# make sure to set the grid objective to pearson
learner.train(train_fs, grid_search=True, grid_objective='pearson')
# make sure that the feature importances are as expected.
if name.endswith('AdaBoostRegressor'):
if use_feature_hashing:
expected_feature_importances = [0.749811,
0.001373,
0.23357,
0.011691,
0.003554]
else:
expected_feature_importances = [0.10266744, 0.18681777, 0.71051479]
else:
expected_feature_importances = ([0.735756,
0.001034,
0.242734,
0.015836,
0.00464] if use_feature_hashing else
[0.082621,
0.166652,
0.750726])
feature_importances = learner.model.feature_importances_
assert_allclose(feature_importances, expected_feature_importances,
atol=1e-2, rtol=0)
# now generate the predictions on the test FeatureSet
predictions = learner.predict(test_fs)
# now make sure that the predictions are close to
# the actual test FeatureSet labels that we generated
# using make_regression_data. To do this, we just
# make sure that they are correlated with pearson > 0.95
cor, _ = pearsonr(predictions, test_fs.labels)
assert_greater(cor, 0.95)
开发者ID:EducationalTestingService,项目名称:skll,代码行数:56,代码来源:test_regression.py
示例15: check_tree_models
def check_tree_models(name,
use_feature_hashing=False,
use_rescaling=False):
# create a FeatureSet object with the data we want to use
if use_feature_hashing:
train_fs, test_fs, _ = make_regression_data(num_examples=5000,
num_features=10,
use_feature_hashing=True,
feature_bins=5)
else:
train_fs, test_fs, _ = make_regression_data(num_examples=2000,
num_features=3)
# create the learner
if use_rescaling:
name = 'Rescaled' + name
learner = Learner(name)
# train it with the training feature set we created
# make sure to set the grid objective to pearson
learner.train(train_fs, grid_search=True, grid_objective='pearson')
# make sure that the feature importances are as expected.
if name.endswith('DecisionTreeRegressor'):
expected_feature_importances = ([0.730811,
0.001834,
0.247603,
0.015241,
0.004511] if use_feature_hashing else
[0.08926899,
0.15585068,
0.75488033])
else:
expected_feature_importances = ([0.733654,
0.002528,
0.245527,
0.013664,
0.004627] if use_feature_hashing else
[0.07974267,
0.16121895,
0.75903838])
feature_importances = learner.model.feature_importances_
assert_allclose(feature_importances, expected_feature_importances,
atol=1e-2, rtol=0)
# now generate the predictions on the test FeatureSet
predictions = learner.predict(test_fs)
# now make sure that the predictions are close to
# the actual test FeatureSet labels that we generated
# using make_regression_data. To do this, we just
# make sure that they are correlated with pearson > 0.95
cor, _ = pearsonr(predictions, test_fs.labels)
assert_greater(cor, 0.95)
开发者ID:EducationalTestingService,项目名称:skll,代码行数:56,代码来源:test_regression.py
示例16: check_sparse_predict
def check_sparse_predict(use_feature_hashing=False):
train_fs, test_fs = make_sparse_data(
use_feature_hashing=use_feature_hashing)
# train a linear SVM on the training data and evalute on the testing data
learner = Learner('LogisticRegression')
learner.train(train_fs, grid_search=False)
test_score = learner.evaluate(test_fs)[1]
expected_score = 0.51 if use_feature_hashing else 0.45
assert_almost_equal(test_score, expected_score)
开发者ID:MechCoder,项目名称:skll,代码行数:10,代码来源:test_classification.py
示例17: check_adaboost_predict
def check_adaboost_predict(base_estimator, algorithm, expected_score):
train_fs, test_fs = make_sparse_data()
# train an AdaBoostClassifier on the training data and evalute on the
# testing data
learner = Learner('AdaBoostClassifier', model_kwargs={'base_estimator': base_estimator,
'algorithm': algorithm})
learner.train(train_fs, grid_search=False)
test_score = learner.evaluate(test_fs)[1]
assert_almost_equal(test_score, expected_score)
开发者ID:EducationalTestingService,项目名称:skll,代码行数:10,代码来源:test_classification.py
示例18: check_sparse_predict
def check_sparse_predict(learner_name, expected_score, use_feature_hashing=False):
train_fs, test_fs = make_sparse_data(
use_feature_hashing=use_feature_hashing)
# train the given classifier on the training
# data and evalute on the testing data
learner = Learner(learner_name)
learner.train(train_fs, grid_search=False)
test_score = learner.evaluate(test_fs)[1]
assert_almost_equal(test_score, expected_score)
开发者ID:EducationalTestingService,项目名称:skll,代码行数:10,代码来源:test_classification.py
示例19: check_bad_xval_float_classes
def check_bad_xval_float_classes(do_stratified_xval):
float_class_fs = make_float_class_data()
prediction_prefix = join(_my_dir, 'output', 'float_class')
learner = Learner('LogisticRegression')
learner.cross_validate(float_class_fs,
stratified=do_stratified_xval,
grid_search=True,
grid_objective='accuracy',
prediction_prefix=prediction_prefix)
开发者ID:EducationalTestingService,项目名称:skll,代码行数:10,代码来源:test_classification.py
示例20: check_learner_api_grid_search_no_objective
def check_learner_api_grid_search_no_objective(task='train'):
(train_fs,
test_fs) = make_classification_data(num_examples=500,
train_test_ratio=0.7,
num_features=5,
use_feature_hashing=False,
non_negative=True)
learner = Learner('LogisticRegression')
if task == 'train':
_ = learner.train(train_fs)
else:
_ = learner.cross_validate(train_fs)
开发者ID:EducationalTestingService,项目名称:skll,代码行数:13,代码来源:test_classification.py
注:本文中的skll.learner.Learner类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论