• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python metrics.kappa函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中skll.metrics.kappa函数的典型用法代码示例。如果您正苦于以下问题:Python kappa函数的具体用法?Python kappa怎么用?Python kappa使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了kappa函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: metrics_helper

def metrics_helper(human_scores, system_scores):
    """
    This is a helper function that computes some basic
    metrics for the system_scores against the human_scores.
    """

    # compute the kappas
    unweighted_kappa = kappa(human_scores, system_scores)
    quadratic_weighted_kappa = kappa(human_scores,
                                     round(system_scores),
                                     weights='quadratic')

    # compute the agreement statistics
    human_system_agreement = agreement(human_scores, system_scores)
    human_system_adjacent_agreement = agreement(human_scores,
                                             system_scores,
                                             tolerance=1)

    # compute the pearson correlation after removing
    # any cases where either of the scores are NaNs.
    df = pd.DataFrame({'human': human_scores,
                       'system': system_scores}).dropna(how='any')
    correlations = pearsonr(df['human'], df['system'])[0]

    # compute the min/max/mean/std. dev. for the system and human scores
    min_system_score = np.min(system_scores)
    min_human_score = np.min(human_scores)

    max_system_score = np.max(system_scores)
    max_human_score = np.max(human_scores)

    mean_system_score = np.mean(system_scores)
    mean_human_score = np.mean(human_scores)

    system_score_sd = np.std(system_scores, ddof=1)
    human_score_sd = np.std(human_scores, ddof=1)

    # compute standardized mean difference as recommended
    # by Williamson et al (2012)
    numerator = mean_system_score - mean_human_score
    denominator = np.sqrt((system_score_sd**2 + human_score_sd**2)/2)
    SMD = numerator/denominator

    # return everything as a series
    return pd.Series({'kappa': unweighted_kappa,
                      'wtkappa': quadratic_weighted_kappa,
                      'exact_agr': human_system_agreement,
                      'adj_agr': human_system_adjacent_agreement,
                      'SMD': SMD,
                      'corr': correlations,
                      'sys_min': min_system_score,
                      'sys_max': max_system_score,
                      'sys_mean': mean_system_score,
                      'sys_sd': system_score_sd,
                      'h_min': min_human_score,
                      'h_max': max_human_score,
                      'h_mean': mean_human_score,
                      'h_sd': human_score_sd,
                      'N': len(system_scores)})
开发者ID:WeilamChung,项目名称:rsmtool,代码行数:59,代码来源:analysis.py


示例2: agreementtest

def agreementtest(path1,path2):
    #1. import the labels
    from utils import loadLabels
    label_human = loadLabels(path1,0,2)
    label_machine = loadLabels(path2,0,2)
    #2. transfer them into the list
    y = []
    y_pred = []

    for key in label_human:
        y += [label_human[key]]
        y_pred += [label_machine[key]]
    print len(y),len(y_pred)
    #3. get the raw agreement
    from pandas import DataFrame
    from pandas import crosstab
    result = DataFrame({'y_pred' : y_pred,
                        'y_human' : y})
    crosstable = crosstab(result['y_pred'], result['y_human'])

    print crosstable

    acc = float(crosstable['1']['1']+crosstable['0']['0'])/len(y_pred)
    prec = float(crosstable['1']['1'])/(crosstable['1']['1']+crosstable['0']['1'])
    recall = float(crosstable['1']['1'])/(crosstable['1']['1']+crosstable['1']['0'])
    F1_hand = 2 * prec * recall/( prec + recall)

    #4. use the skll to get the kappa
    from skll import metrics
    kappa = metrics.kappa(y,y_pred)

    return crosstable,acc,recall,prec,F1_hand,kappa
开发者ID:Yaru007,项目名称:Twitter-data-mining-framwork,代码行数:32,代码来源:metric.py


示例3: stats

def stats (list1,list2):
    print "Predictions:"
    print list1
    print list(reversed(list2)) #COMPARABLE ORDER
    print

    list1fl=[class2float(i) for i in list1]
    list2fl=[class2float(i) for i in list(reversed(list2))]

    print list1fl
    print list2fl

    print
    print kappa(list1fl,list2fl) #http://skll.readthedocs.org/en/latest/_modules/skll/metrics.html
    print
    print list2
开发者ID:manexagirrezabal,项目名称:char-rnn,代码行数:16,代码来源:callSampleMod-bidirectional.py


示例4: train_model

def train_model(train, folds):
    y = train.median_relevance.values
    x = train.drop(["median_relevance", "doc_id"], 1).values

    clf = Pipeline([
        ('scl', StandardScaler(copy=True, with_mean=True, with_std=True)),
        ('svm', SVC(C=10.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None))
        ])


    scores = []
    for train_index, test_index in cross_validation.StratifiedKFold(
            y=y,
            n_folds=int(folds),
            shuffle=True,
            random_state=42):

        x_train, x_test = x[train_index], x[test_index]
        y_train, y_test = y[train_index], y[test_index]

        clf.fit(x_train, y_train)
        predicted = transform_regression(clf.predict(x_test))

        s = kappa(y_test, predicted, weights="quadratic")
        print s
        scores.append(s)

    warn("cv scores:")
    warn(scores)
    warn(np.mean(scores))
    warn(np.std(scores))

    clf.fit(x, y)

    return clf
开发者ID:drsmithization,项目名称:kaggle_public,代码行数:35,代码来源:eval.py


示例5: testing

def testing(file):
	""" 
		To test and see if the quadratic weighing kappa function is working properly
	"""
	f = open(file, 'r')
	f.readline()

	labels, estimate = [], []
	for row in f:
		label = row.strip().split("\t")[6]
		if random() > 0.5:
			estimate.append(int(4*int(label)*random()))
		else:
			estimate.append(int(int(label)*random()))
		labels.append(int(label))

	print kappa(labels, labels, weights = 'quadratic')
开发者ID:ChetanVashisht,项目名称:Automatic-Essay-Evaluation,代码行数:17,代码来源:remove.py


示例6: runSVM

 def runSVM(self, y_test, y_train, x_train, x_test):
     clf = svm.LinearSVC(class_weight="auto")
     clf.fit(x_train, y_train)
     direction = clf.coef_.tolist()[0]
     y_pred = clf.predict(x_test)
     y_pred = y_pred.tolist()
     kappa_score = kappa(y_test, y_pred)
     return kappa_score,  direction
开发者ID:eygrr,项目名称:RulesFromAuto-encoders,代码行数:8,代码来源:SVM.py


示例7: print_kappa

    def print_kappa(self, method, one_off=False):
        mean_kappa_same = []
        mean_kappa_diff = []

        for i in range(0,50):

            checked_pairs = []
            checked_pairs_same = []
            checked_pairs_diff = []
            kappas_same = []
            kappas_diff = []

            # calculating agreement for pairs from the same batches and different batches
            while len(checked_pairs_same) < 20 or len(checked_pairs_diff) < 20:
                id1 = random.choice(self.ids)
                id2 = random.choice(self.ids)
                pair = sorted([id1, id2])
                if pair not in checked_pairs and id1 != id2:
                    values_first = self.get_rating_values(id1)
                    values_second = self.get_rating_values(id2)
                    if len(values_first) != len(values_second) or len(values_first) == 0:
                        continue

                    if method == 'standard':
                        kappa = metrics.kappa(values_first, values_second)
                    else:
                        kappa = metrics.kappa(values_first, values_second, method, one_off)

                    if self.batch_hash[id1] == self.batch_hash[id2]:
                        kappas_same.append(kappa)
                        checked_pairs_same.append(pair)
                    else:
                        kappas_diff.append(kappa)
                        checked_pairs_diff.append(pair)

                    checked_pairs.append(pair)

            mean_kappa_same.append(numpy.mean(kappas_same))
            mean_kappa_diff.append(numpy.mean(kappas_diff))

        print("Kappa same group: " + str(numpy.mean(mean_kappa_same)) + " different groups: " + str(numpy.mean(mean_kappa_diff)))
        print("Confidence same: " + str(stats.norm.interval(0.999, loc=numpy.mean(mean_kappa_same), scale=numpy.std(mean_kappa_same)/math.sqrt(50))) + " different: " + str(stats.norm.interval(0.999, loc=numpy.mean(mean_kappa_diff), scale=numpy.std(mean_kappa_diff)/math.sqrt(50))))
开发者ID:amalinovskiy,项目名称:translation_rater,代码行数:42,代码来源:analysis.py


示例8: eval

 def eval(self):
     sys.stderr.write('Evaluating\n')
     folds = StratifiedKFold(y=self.y_train, n_folds=self.folds, shuffle=True, random_state=1337)
     scores = []
     for train_index, test_index in folds:
         self.fit(train_index)
         predicted, y_test = self.predict(test_index)
         k = kappa(y_test, transform(predicted), weights='quadratic')
         print(k)
         scores.append(k)
     print(scores)
     print(np.mean(scores))
     print(np.std(scores))
开发者ID:drsmithization,项目名称:kaggle_public,代码行数:13,代码来源:model.py


示例9: evalerror

def evalerror(preds, dtrain):
    labels = dtrain.get_label()

    # TODO: delete
    # print 'evalerror'
    # print max(preds)
    preds = np.round(preds, 0)
    # print max(preds)
    # print len(preds), preds

    # return a pair metric_name, result
    # since preds are margin(before logistic transformation, cutoff at 0)
    return 'kappa', 1.0 - kappa(labels, preds, weights='quadratic')
开发者ID:Chenrongjing,项目名称:diabetic-retinopathy,代码行数:13,代码来源:cross_validation.py


示例10: kNNClass

def kNNClass(train_idx,test_idx,n_neighbors):
	training_data=input_kmers_counts.loc[train_idx]
	testing_data=input_kmers_counts.loc[test_idx]
	clf = neighbors.KNeighborsClassifier(n_neighbors, weights="uniform")
	clf.fit(training_data[kmer_colums], training_data["class"])
	#print "predicting"
	predicted_classes= clf.predict(testing_data[kmer_colums])
	# compute kappa stat 
	confusion_matrix(testing_data["class"],predicted_classes)
	# make a mapping 
	class_map=dict(zip(set(testing_data["class"]),range(0,4)))
	kapp=kappa([class_map[x] for x in testing_data["class"]],[class_map[x] for x in predicted_classes])
	cm=caret.confusionMatrix(robjects.FactorVector(predicted_classes),robjects.FactorVector(testing_data["class"]))
	return kapp,cm
开发者ID:EdwardBetts,项目名称:metaviro,代码行数:14,代码来源:knn_test.py


示例11: kNNClass

def kNNClass(train_idx,test_idx,n_neighbors,k_mer_subset):
	logger.info('computing for %s'%(k_mer_subset))
	train_idx=train_idx
	test_idx=test_idx
	training_subset=normalized_counts.loc[train_idx][np.append(k_mer_subset,"class")]
	testing_subset=normalized_counts.loc[test_idx][np.append(k_mer_subset,"class")]
	clf = neighbors.KNeighborsClassifier(n_neighbors, weights="uniform")
	clf.fit(training_subset[k_mer_subset], training_subset["class"])
	#print "predicting"
	predicted_classes= clf.predict(testing_data[k_mer_subset])
	# compute kappa stat 
	confusion_matrix(testing_data["class"],predicted_classes)
	# make a mapping 
	class_map=dict(zip(set(testing_data["class"]),range(0,4)))
	kapp=kappa([class_map[x] for x in testing_data["class"]],[class_map[x] for x in predicted_classes])
	cm=caret.confusionMatrix(robjects.FactorVector(predicted_classes),robjects.FactorVector(	testing_data["class"]))
	logger.info("Finished for %s with kappa==%f"%(k_mer_subset,kapp))
	return kapp,cm
开发者ID:EdwardBetts,项目名称:metaviro,代码行数:18,代码来源:knn_feature_subsets.py


示例12: get_average_kappa

def get_average_kappa(arr_act, arr_pred):
	"""
	Calculates the average quadratic kappa
	over the entire essay set
	"""

	assert(len(arr_act) == len(arr_pred))
	total = len(arr_act)
	kappa_val = 0

	for i in xrange(0, total):
		kappa_val += met.kappa([arr_act[i]], [arr_pred[i]], \
					'quadratic')
#		print arr_act[i], '-', arr_pred[i]

	kappa_val  = float(kappa_val) / float(total)

	return kappa_val
开发者ID:vaibhav4595,项目名称:AutoEssayGrading,代码行数:18,代码来源:metrics.py


示例13: accuracy_stats

def accuracy_stats(Ypred, Ytest):
    
    stats = {}
    
    statkeys = ['AA', 'AP', 'f1', 'recall', 'kappa']
    for key in statkeys:
        stats[key] = []
   

    for ypred, ytest in zip(Ypred, Ytest):
        
        stats['AA'].append(accuracy_score(ytest.ravel(), ypred.ravel()))
        stats['AP'].append(precision_score(ytest.ravel(), ypred.ravel()))
        stats['f1'].append(f1_score(ytest.ravel(), ypred.ravel()))
        stats['recall'].append(recall_score(ytest.ravel(), ypred.ravel()))
        stats['kappa'].append(kappa(ytest.ravel(), ypred.ravel()))
        
    return stats
开发者ID:jejjohnson,项目名称:manifold_learning,代码行数:18,代码来源:classification_list.py


示例14: scores

def scores(X,y,y_proba,name="nan",to_plot=False):
#    print(name+' Classifier:\n {}'.format(metrics.classification_report(X,y)))
    cm= metrics.confusion_matrix(X,y)
    print cm
    if(to_plot):
        plt_cm(X,y,[-1,1])
        auc_compute(X,y)
    auc=roc_auc_score(X,y_proba)
    print(name+' Classifier auc:  %f' % auc)
    accuracy=metrics.accuracy_score(X,y)
    print(name+' Classifier accuracy:  %f' % (accuracy))
    f1=metrics.f1_score(X,y,pos_label=1)
    print(name+' Classifier f1: %f' % (f1))
    precision=metrics.precision_score(X,y)
    print(name+' Classifier precision_score: %f' % (precision))
    recall=metrics.recall_score(X,y)
    print(name+' Classifier recall_score: %f' % (recall))
    kappa_score=kappa(X,y)
    
    print(name+' Classifier kappa_score:%f' % (kappa_score))
    return [auc,f1.mean(),accuracy.mean(),precision.mean(),recall.mean(),kappa_score]
开发者ID:Zerowxm,项目名称:kdd-cup2009,代码行数:21,代码来源:utils.py


示例15: train_model

def train_model(train, folds):
    y = train.median_relevance.values
    x = train.drop(["median_relevance", "doc_id"], 1).values

    xg_params = {
        "silent": 1,
        "objective": "reg:linear",
        "nthread": 4,
        "bst:max_depth": 10,
        "bst:eta": 0.1,
        "bst:subsample": 0.5
    }
    num_round = 600

    scores = []
    for train_index, test_index in cross_validation.StratifiedKFold(
            y=y,
            n_folds=int(folds),
            shuffle=True,
            random_state=42):

        x_train, x_test = x[train_index], x[test_index]
        y_train, y_test = y[train_index], y[test_index]

        xg_train = xg.DMatrix(x_train, label=y_train)
        xg_test  = xg.DMatrix(x_test,  label=y_test)

        watchlist = [(xg_train, "train"), (xg_test, "test")]
        bst = xg.train(xg_params, xg_train, num_round, watchlist, feval=evalerror)

        predicted = transform_regression(bst.predict(xg_test))

        s = kappa(y_test, predicted, weights="quadratic")
        print s
        scores.append(s)

    warn("cv scores:")
    warn(scores)
    warn(np.mean(scores))
    warn(np.std(scores))
开发者ID:drsmithization,项目名称:kaggle_public,代码行数:40,代码来源:eval_xgboost.py


示例16: run

    def run(self):
        """
        run Forrest
        """
        
        for loopcount in range(self.ntasks):
            seed = time.time()
            resultsline = []
            # do stuff
            training = random.sample(range(self.matrix.shape[0]), int(self.trainingratio*self.matrix.shape[0]))
            testing = list(set(range(self.matrix.shape[0])).difference(training))
            
            print  self.matrix[training,:].shape, len([targ[i] for i in training]), self.matrix[testing,:].shape
            
            clf = neighbors.KNeighborsClassifier(n_neighbors, weights="distance")
            clf.fit(self.matrix[training,:].todense(), [targ[i] for i in training])
            #~ clf.fit(self.matrix[training,:], [targ[i] for i in training])
            classes=clf.predict(self.matrix[testing,:].todense())
            #~ classes=clf.predict(self.matrix[testing,:])
            
#            print(confusion_matrix(classes,[targ[i] for i in testing]))
            
#            print(kappa(classes,[targ[i] for i in testing]))

            resultsline = []
            resultsline = resultsline+info_log
            resultsline.append(seed)
            resultsline.append(kappa(classes,[targ[i] for i in testing]))
            conf = []
            for row in confusion_matrix(classes,[targ[i] for i in testing]):
                conf = conf+list(row)
            resultsline = resultsline+conf
            
            self.result_queue.put([str(item) for item in resultsline])
            
        # store the results in the results queue once all the contigs are processed
        # please run please run please run please run please run please run 
#        
        sys.stdout.write("Done with worker for %d tasks: %d loops done\n" % (self.ntasks, loopcount+1))
开发者ID:EdwardBetts,项目名称:metaviro,代码行数:39,代码来源:knn_multi.py


示例17: test_invalid_weighted_kappa

def test_invalid_weighted_kappa():
    kappa([1, 2, 1], [1, 2, 1], weights='invalid', allow_off_by_one=False)
    kappa([1, 2, 1], [1, 2, 1], weights='invalid', allow_off_by_one=True)
开发者ID:wavelets,项目名称:skll,代码行数:3,代码来源:test_skll.py


示例18: list

X = iris.data[:, :2]  # we only take the first two features. We could
                      # avoid this ugly slicing by using a two-dim dataset
y = iris.target

training = random.sample(range(150), 100)
testing = list(set(range(150)).difference(training))

X_train = iris.data[training,:]
y_train = [y[i] for i in training]
X_test = iris.data[testing,:]
y_test = [y[i] for i in testing]

clf3 = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf3.fit(X_train, y_train)

print "kappa =", kappa(y_test,clf3.predict(X_test))

metric = LMNN(X_train, y_train)
metric.fit()
new_X_train = metric.transform()
new_X_test = metric.transform(X_test)
clf4 = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf4.fit(new_X_train, y_train)

print "kappa =", kappa(y_test,clf4.predict(new_X_test))


#
## Create color maps
#cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
#cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
开发者ID:EdwardBetts,项目名称:metaviro,代码行数:31,代码来源:lmnn_test1.py


示例19: confusion_matrix

training_set=indices[0:int(n_rows*training_ratio)]
testing_set=indices[-int(n_rows*training_ratio):]

training_data=input_kmers_counts.loc[training_set]
testing_data=input_kmers_counts.loc[testing_set]


clf = neighbors.KNeighborsClassifier(15, weights="uniform")
clf.fit(training_data[count_colums], training_data["class"])
#print "predicting"
predicted_classes= clf.predict(testing_data[count_colums])
# compute kappa stat 
confusion_matrix(testing_data["class"],predicted_classes)
# make a mapping 
class_map=dict(zip(set(testing_data["class"]),range(0,4)))
kappa([class_map[x] for x in testing_data["class"]],[class_map[x] for x in predicted_classes])


# fit a KNN on the normalized_counts
# kNNClass(training_set,testing_set,15,count_colums)


# We focus on the ambiguous k-mers, approx 15k; basically all-kmer appear more than once

ambiguous_kmers=all_nodes_df[all_nodes_df["degree"]>2]
len(set(ambiguous_kmers['kmer']))
len(set(all_nodes_df['kmer']))

# We do a PCA on that 
amb_kmers_counts=pandas.pivot_table(ambiguous_kmers,values="degree",index=['sequence_description'],columns=["kmer"],fill_value=0)
kmer_colums=amb_kmers_counts.columns
开发者ID:EdwardBetts,项目名称:metaviro,代码行数:31,代码来源:build_de_bruijn.py


示例20: quadratic_kappa

def quadratic_kappa(true, predicted):
    return kappa(true, predicted, weights='quadratic')
开发者ID:StevenReitsma,项目名称:kaggle-diabetic-retinopathy,代码行数:2,代码来源:net_512_b64_ns.py



注:本文中的skll.metrics.kappa函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python mlp.Classifier类代码示例发布时间:2022-05-27
下一篇:
Python learner.Learner类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap