本文整理汇总了Python中spynnaker.pyNN.run函数的典型用法代码示例。如果您正苦于以下问题:Python run函数的具体用法?Python run怎么用?Python run使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了run函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_script
def test_script(self):
"""
test that tests the printing of v from a pre determined recording
:return:
"""
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
n_neurons = 128 * 128 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_cond_exp", 256)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0,
'e_rev_E': 0.,
'e_rev_I': -80.
}
populations = list()
projections = list()
weight_to_spike = 0.035
delay = 17
spikes = read_spikefile('test.spikes', n_neurons)
print spikes
spike_array = {'spike_times': spikes}
populations.append(p.Population(
n_neurons, p.SpikeSourceArray, spike_array, label='inputSpikes_1'))
populations.append(p.Population(
n_neurons, p.IF_cond_exp, cell_params_lif, label='pop_1'))
projections.append(p.Projection(
populations[0], populations[1], p.OneToOneConnector(
weights=weight_to_spike, delays=delay)))
populations[1].record()
p.run(1000)
spikes = populations[1].getSpikes(compatible_output=True)
if spikes is not None:
print spikes
pylab.figure()
pylab.plot([i[1] for i in spikes], [i[0] for i in spikes], ".")
pylab.xlabel('Time/ms')
pylab.ylabel('spikes')
pylab.title('spikes')
pylab.show()
else:
print "No spikes received"
p.end()
开发者ID:Paul92,项目名称:sPyNNaker,代码行数:57,代码来源:read_spike_file_1.0_time_step.py
示例2: test_recording_numerious_element_over_limit
def test_recording_numerious_element_over_limit(self):
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
n_neurons = 2000 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
boxed_array = numpy.zeros(shape=(0, 2))
spike_array = list()
for neuron_id in range(0, n_neurons):
spike_array.append(list())
for random_time in range(0, 200000):
random_time2 = random.randint(0, 50000)
boxed_array = numpy.append(
boxed_array, [[neuron_id, random_time2]], axis=0)
spike_array[neuron_id].append(random_time)
spike_array_params = {'spike_times': spike_array}
populations.append(p.Population(n_neurons, p.IF_curr_exp,
cell_params_lif,
label='pop_1'))
populations.append(p.Population(n_neurons, p.SpikeSourceArray,
spike_array_params,
label='inputSpikes_1'))
projections.append(p.Projection(populations[1], populations[0],
p.OneToOneConnector()))
populations[1].record()
p.run(50000)
spike_array_spikes = populations[1].getSpikes()
boxed_array = boxed_array[numpy.lexsort((boxed_array[:, 1],
boxed_array[:, 0]))]
numpy.testing.assert_array_equal(spike_array_spikes, boxed_array)
p.end()
开发者ID:apdavison,项目名称:sPyNNaker,代码行数:48,代码来源:test_spike_source_array.py
示例3: test_get_weights
def test_get_weights(self):
# Population parameters
cell_params = {
'cm': 0.2, # nF
'i_offset': 0.2,
'tau_m': 20.0,
'tau_refrac': 5.0,
'tau_syn_E': 5.0,
'tau_syn_I': 10.0,
'v_reset': -60.0,
'v_rest': -60.0,
'v_thresh': -50.0
}
# Reduce number of neurons to simulate on each core
sim.set_number_of_neurons_per_core(sim.IF_curr_exp, 100)
# Build inhibitory plasticity model
stdp_model = sim.STDPMechanism(
timing_dependence=sim.SpikePairRule(
tau_plus=20.0, tau_minus=12.7, nearest=True),
weight_dependence=sim.AdditiveWeightDependence(
w_min=0.0, w_max=1.0, A_plus=0.05),
mad=True
)
# Build plastic network
plastic_ex_pop, plastic_ie_projection =\
self.build_network(sim.SynapseDynamics(slow=stdp_model),
cell_params)
# Run simulation
sim.run(10000)
# Get plastic spikes and save to disk
plastic_spikes = plastic_ex_pop.getSpikes(compatible_output=True)
#numpy.save("plastic_spikes.npy", plastic_spikes)
plastic_weights = plastic_ie_projection.getWeights(format="array")
# mean_weight = numpy.average(plastic_weights)
# End simulation on SpiNNaker
sim.end()
开发者ID:Paul92,项目名称:sPyNNaker,代码行数:43,代码来源:stdp_to_read_get_weights_master_pop_binary.py
示例4: main
def main():
# setup timestep of simulation and minimum and maximum synaptic delays
Frontend.setup(timestep=simulationTimestep, min_delay=minSynapseDelay, max_delay=maxSynapseDelay, threads=4)
# create a spike sources
retinaLeft = createSpikeSource("RetL")
retinaRight = createSpikeSource("RetR")
# create network and attach the spike sources
network, (liveConnectionNetwork, liveConnectionRetinas) = createCooperativeNetwork(retinaLeft=retinaLeft, retinaRight=retinaRight)
# non-blocking run for time in milliseconds
print "Simulation started..."
Frontend.run(simulationTime)
print "Simulation ended."
# plot results
#
# plotExperiment(retinaLeft, retinaRight, network)
# finalise program and simulation
Frontend.end()
开发者ID:AMFtech,项目名称:StereoMatching,代码行数:21,代码来源:CooperativeNetwork.py
示例5: test_recording_1_element
def test_recording_1_element(self):
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
n_neurons = 200 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
spike_array = {'spike_times': [[0]]}
populations.append(p.Population(n_neurons, p.IF_curr_exp,
cell_params_lif,
label='pop_1'))
populations.append(p.Population(1, p.SpikeSourceArray, spike_array,
label='inputSpikes_1'))
projections.append(p.Projection(populations[0], populations[0],
p.OneToOneConnector()))
populations[1].record()
p.run(5000)
spike_array_spikes = populations[1].getSpikes()
boxed_array = numpy.zeros(shape=(0, 2))
boxed_array = numpy.append(boxed_array, [[0, 0]], axis=0)
numpy.testing.assert_array_equal(spike_array_spikes, boxed_array)
p.end()
开发者ID:apdavison,项目名称:sPyNNaker,代码行数:39,代码来源:test_spike_source_array.py
示例6: simulate
def simulate(self, spinnaker, input_spike_times):
# Cell parameters
cell_params = {
'tau_m': 20.0,
'v_rest': -60.0,
'v_reset': -60.0,
'v_thresh': -40.0,
'tau_syn_E': 2.0,
'tau_syn_I': 2.0,
'tau_refrac': 2.0,
'cm': 0.25,
'i_offset': 0.0,
}
rng = p.NumpyRNG(seed=28375)
v_init = p.RandomDistribution('uniform', [-60, -40], rng)
p.setup(timestep=1.0, min_delay=1.0, max_delay=10.0)
pop = p.Population(1, p.IF_curr_exp, cell_params, label='population')
pop.randomInit(v_init)
pop.record()
pop.record_v()
noise = p.Population(1, p.SpikeSourceArray,
{"spike_times": input_spike_times})
p.Projection(noise, pop, p.OneToOneConnector(weights=0.4, delays=1),
target='excitatory')
# Simulate
p.run(self.simtime)
pop_voltages = pop.get_v(compatible_output=True)
pop_spikes = pop.getSpikes(compatible_output=True)
p.end()
return pop_voltages, pop_spikes
开发者ID:Paul92,项目名称:sPyNNaker,代码行数:39,代码来源:test_a_single_if_cur_exp_neuron.py
示例7: test_recording_poisson_spikes_rate_0
def test_recording_poisson_spikes_rate_0(self):
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
n_neurons = 256 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
populations.append(p.Population(n_neurons, p.IF_curr_exp,
cell_params_lif,
label='pop_1'))
populations.append(p.Population(n_neurons, p.SpikeSourcePoisson,
{'rate': 0},
label='inputSpikes_1'))
projections.append(p.Projection(populations[1], populations[0],
p.OneToOneConnector()))
populations[1].record()
p.run(5000)
spikes = populations[1].getSpikes()
print spikes
p.end()
开发者ID:SpikeFrame,项目名称:sPyNNaker,代码行数:38,代码来源:test_poisson_spike_source.py
示例8: SpynnakerLiveSpikesConnection
for neuron_id in neuron_ids:
print "Received spike at time", time, "from", label, "-", neuron_id
# Set up the live connection for sending spikes
live_spikes_connection = SpynnakerLiveSpikesConnection(
receive_labels=None, local_port=19999, send_labels=["spike_injector_forward"])
# Set up callbacks to occur at the start of simulation
live_spikes_connection.add_start_callback("spike_injector_forward", send_input_forward)
# if not using the c visualiser, then a new spynnaker live spikes connection
# is created to define that there are python code which receives the
# outputted spikes.
live_spikes_connection = SpynnakerLiveSpikesConnection(
receive_labels=["pop_forward"], local_port=19996, send_labels=None)
# Set up callbacks to occur when spikes are received
live_spikes_connection.add_receive_callback("pop_forward", receive_spikes)
# Run the simulation on spiNNaker
Frontend.run(run_time)
# Retrieve spikes from the synfire chain population
spikes_forward = pop_forward.getSpikes()
# If there are spikes, plot using matplotlib
if len(spikes_forward) != 0:
pylab.figure()
if len(spikes_forward) != 0:
pylab.plot([i[1] for i in spikes_forward],
[i[0] for i in spikes_forward], "b.")
pylab.ylabel('neuron id')
pylab.xlabel('Time/ms')
pylab.title('spikes')
pylab.show()
else:
print "No spikes received"
# Clear data structures on spiNNaker to leave the machine in a clean state for
开发者ID:SpiNNakerManchester,项目名称:SpiNNakerManchester.github.io,代码行数:31,代码来源:simple_IO_vis_task1.3.py
示例9:
import spynnaker.pyNN as sim
sim.setup(timestep=1.0, min_delay=1.0, max_delay=1.0)
simtime = 1000
pg_pop1 = sim.Population(2, sim.SpikeSourcePoisson,
{'rate': 10.0, 'start':0,
'duration':simtime}, label="pg_pop1")
pg_pop2 = sim.Population(2, sim.SpikeSourcePoisson,
{'rate': 10.0, 'start':0,
'duration':simtime}, label="pg_pop2")
pg_pop1.record()
pg_pop2.record()
sim.run(simtime)
spikes1 = pg_pop1.getSpikes(compatible_output=True)
spikes2 = pg_pop2.getSpikes(compatible_output=True)
print spikes1
print spikes2
sim.end()
开发者ID:Paul92,项目名称:sPyNNaker,代码行数:25,代码来源:test_poisson.py
示例10:
spikeArray = {'spike_times': [[1050, 1060, 1500,1700, 1900, 2200]]}
populations.append(p.Population(nNeurons, p.IF_curr_exp, cell_params_lif,
label='pop_1'))
populations.append(p.Population(1, p.SpikeSourceArray, spikeArray,
label='inputSpikes_1'))
projections.append(p.Projection(populations[0], populations[0],
p.FromListConnector(loopConnections)))
projections.append(p.Projection(populations[1], populations[0],
p.FromListConnector(injectionConnection)))
populations[0].record_v()
populations[0].record_gsyn()
populations[0].record()
p.run(runtime)
p.run(runtime)
p.run(runtime)
v = populations[0].get_v(compatible_output=True)
gsyn = populations[0].get_gsyn(compatible_output=True)
spikes = populations[0].getSpikes(compatible_output=True)
if spikes is not None:
print spikes
pylab.figure()
pylab.plot([i[1] for i in spikes], [i[0] for i in spikes], ".")
pylab.xlabel('Time/ms')
pylab.ylabel('spikes')
pylab.title('spikes')
开发者ID:SpikeFrame,项目名称:sPyNNaker,代码行数:31,代码来源:synfire_3_run_no_spikes_in_first_multiple_second_exit_no_extraction_if_curr_exp.py
示例11:
spikeArray = {'spike_times': [[0, 1050]]}
populations.append(p.Population(nNeurons, p.IF_curr_exp, cell_params_lif,
label='pop_1'))
populations.append(p.Population(1, p.SpikeSourceArray, spikeArray,
label='inputSpikes_1'))
projections.append(p.Projection(populations[0], populations[0],
p.FromListConnector(loopConnections)))
projections.append(p.Projection(populations[1], populations[0],
p.FromListConnector(injectionConnection)))
populations[0].record_v()
populations[0].record_gsyn()
populations[0].record()
p.run(runtime)
v = None
gsyn = None
spikes = None
v = populations[0].get_v(compatible_output=True)
gsyn = populations[0].get_gsyn(compatible_output=True)
spikes = populations[0].getSpikes(compatible_output=True)
if spikes is not None:
print spikes
pylab.figure()
pylab.plot([i[1] for i in spikes], [i[0] for i in spikes], ".")
pylab.xlabel('Time/ms')
pylab.ylabel('spikes')
开发者ID:SpikeFrame,项目名称:sPyNNaker,代码行数:31,代码来源:synfire_1_run_reset_1_run__smaller_runtime_no_extraction_if_curr_exp.py
示例12:
spikeArray = {'spike_times': [[0]]}
populations.append(p.Population(nNeurons, p.IF_curr_exp, cell_params_lif,
label='pop_1'))
populations.append(p.Population(1, p.SpikeSourceArray, spikeArray,
label='inputSpikes_1'))
projections.append(p.Projection(populations[0], populations[0],
p.FromListConnector(loopConnections)))
projections.append(p.Projection(populations[1], populations[0],
p.FromListConnector(injectionConnection)))
populations[0].record_v()
populations[0].record_gsyn()
populations[0].record()
p.run(5000)
v = None
gsyn = None
spikes = None
v = populations[0].get_v(compatible_output=True)
gsyn = populations[0].get_gsyn(compatible_output=True)
spikes = populations[0].getSpikes(compatible_output=True)
if spikes is not None:
print spikes
pylab.figure()
pylab.plot([i[1] for i in spikes], [i[0] for i in spikes], ".")
pylab.xlabel('Time/ms')
pylab.ylabel('spikes')
开发者ID:ruthvik92,项目名称:PyNNExamples,代码行数:31,代码来源:synfire_if_curr_exp.py
示例13: list
populations[0].record()
ExternalDevices.activate_live_output_for(populations[0])
projections.append(
FrontEnd.Projection(populations[1], populations[0], FrontEnd.OneToOneConnector(weights=weight_to_spike))
)
loopConnections = list()
for i in range(0, nNeurons - 1):
singleConnection = (i, ((i + 1) % nNeurons), weight_to_spike, 3)
loopConnections.append(singleConnection)
projections.append(FrontEnd.Projection(populations[0], populations[0], FrontEnd.FromListConnector(loopConnections)))
FrontEnd.run(run_time)
spikes = populations[0].getSpikes(compatible_output=True)
if spikes is not None:
print spikes
pylab.figure()
pylab.plot([i[1] for i in spikes], [i[0] for i in spikes], ".")
pylab.ylabel("neuron id")
pylab.xlabel("Time/ms")
pylab.title("spikes")
pylab.show()
else:
print "No spikes received"
FrontEnd.end()
开发者ID:mdjurfeldt,项目名称:sPyNNakerExternalDevicesPlugin,代码行数:31,代码来源:spike_injection.py
示例14: test_get_voltage
def test_get_voltage(self):
"""
test that tests the getting of v from a pre determined recording
:return:
"""
p.setup(timestep=0.1, min_delay=1.0, max_delay=14.40)
n_neurons = 200 # number of neurons in each population
runtime = 500
p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
weight_to_spike = 2.0
delay = 1.7
loop_connections = list()
for i in range(0, n_neurons):
single_connection = (i, ((i + 1) % n_neurons), weight_to_spike,
delay)
loop_connections.append(single_connection)
injection_connection = [(0, 0, weight_to_spike, 1)]
spike_array = {'spike_times': [[0]]}
populations.append(p.Population(n_neurons, p.IF_curr_exp, cell_params_lif,
label='pop_1'))
populations.append(p.Population(1, p.SpikeSourceArray, spike_array,
label='inputSpikes_1'))
projections.append(p.Projection(populations[0], populations[0],
p.FromListConnector(loop_connections)))
projections.append(p.Projection(populations[1], populations[0],
p.FromListConnector(injection_connection)))
populations[0].record_v()
populations[0].record_gsyn()
populations[0].record()
p.run(runtime)
v = populations[0].get_v(compatible_output=True)
current_file_path = os.path.dirname(os.path.abspath(__file__))
current_file_path = os.path.join(current_file_path, "v.data")
pre_recorded_data = p.utility_calls.read_in_data_from_file(
current_file_path, 0, n_neurons, 0, runtime)
p.end()
for spike_element, read_element in zip(v, pre_recorded_data):
self.assertEqual(round(spike_element[0], 1),
round(read_element[0], 1))
self.assertEqual(round(spike_element[1], 1),
round(read_element[1], 1))
self.assertEqual(round(spike_element[2], 1),
round(read_element[2], 1))
开发者ID:Paul92,项目名称:sPyNNaker,代码行数:67,代码来源:synfire_0.1_timestep_test_get_v.py
示例15: build_network
sim.Projection(ex_pop, ex_pop, sim.FixedProbabilityConnector(0.02, weights=0.03), target='excitatory')
# Make inhibitory->inhibitory projections
sim.Projection(in_pop, in_pop, sim.FixedProbabilityConnector(0.02, weights=-0.3), target='inhibitory')
# Make inhibitory->excitatory projections
ie_projection = sim.Projection(in_pop, ex_pop, sim.FixedProbabilityConnector(0.02, weights=0), target='inhibitory', synapse_dynamics = dynamics)
return ex_pop, ie_projection
# Build static network
static_ex_pop,_ = build_network(None)
# Run for 1s
sim.run(1000)
# Get static spikes and save to disk
static_spikes = static_ex_pop.getSpikes(compatible_output=True)
# Build inhibitory plasticity model
stdp_model = sim.STDPMechanism(
timing_dependence = q.Vogels2011Rule(alpha=0.12,tau=20.0),
weight_dependence = sim.AdditiveWeightDependence(w_min=0.0, w_max=1.0, A_plus=0.05),
mad=True
)
# Build plastic network
plastic_ex_pop, plastic_ie_projection = build_network(sim.SynapseDynamics(slow = stdp_model))
# Run simulation
开发者ID:ericnichols,项目名称:sPyNNakerExtraModelsPlugin,代码行数:31,代码来源:vogels_2011.py
示例16: __init__
def __init__(self):
# initial call to set up the front end (pynn requirement)
Frontend.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
use_c_visualiser = True
use_spike_injector = True
# neurons per population and the length of runtime in ms for the
# simulation, as well as the expected weight each spike will contain
self.n_neurons = 100
# set up gui
p = None
if use_spike_injector:
from multiprocessing import Process
from multiprocessing import Event
ready = Event()
p = Process(target=GUI, args=[self.n_neurons, ready])
p.start()
ready.wait()
# different runtimes for demostration purposes
run_time = None
if not use_c_visualiser and not use_spike_injector:
run_time = 1000
elif use_c_visualiser and not use_spike_injector:
run_time = 10000
elif use_c_visualiser and use_spike_injector:
run_time = 100000
elif not use_c_visualiser and use_spike_injector:
run_time = 10000
weight_to_spike = 2.0
# neural parameters of the IF_curr model used to respond to injected
# spikes.
# (cell params for a synfire chain)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
##################################
# Parameters for the injector population. This is the minimal set of
# parameters required, which is for a set of spikes where the key is
# not important. Note that a virtual key *will* be assigned to the
# population, and that spikes sent which do not match this virtual key
# will be dropped; however, if spikes are sent using 16-bit keys, they
# will automatically be made to match the virtual key. The virtual
# key assigned can be obtained from the database.
##################################
cell_params_spike_injector = {
# The port on which the spiNNaker machine should listen for
# packets. Packets to be injected should be sent to this port on
# the spiNNaker machine
'port': 12345
}
##################################
# Parameters for the injector population. Note that each injector
# needs to be given a different port. The virtual key is assigned
# here, rather than being allocated later. As with the above, spikes
# injected need to match this key, and this will be done automatically
# with 16-bit keys.
##################################
cell_params_spike_injector_with_key = {
# The port on which the spiNNaker machine should listen for
# packets. Packets to be injected should be sent to this port on
# the spiNNaker machine
'port': 12346,
# This is the base key to be used for the injection, which is used
# to allow the keys to be routed around the spiNNaker machine.
# This assignment means that 32-bit keys must have the high-order
# 16-bit set to 0x7; This will automatically be prepended to
# 16-bit keys.
'virtual_key': 0x70000
}
# create synfire populations (if cur exp)
pop_forward = Frontend.Population(
self.n_neurons, Frontend.IF_curr_exp,
cell_params_lif, label='pop_forward')
pop_backward = Frontend.Population(
self.n_neurons, Frontend.IF_curr_exp,
cell_params_lif, label='pop_backward')
# Create injection populations
injector_forward = None
injector_backward = None
if use_spike_injector:
#.........这里部分代码省略.........
开发者ID:ruthvik92,项目名称:PyNNExamples,代码行数:101,代码来源:spike_io_interactive_demo_with_c_vis.py
示例17: print
# Plastic Connection between pre_pop and post_pop
# Sjostrom visual cortex min-triplet params
stdp_model = sim.STDPMechanism(
timing_dependence = sim.PfisterSpikeTripletRule(tau_plus = 16.8, tau_minus = 33.7, tau_x = 101, tau_y = 114),
weight_dependence = sim.AdditiveWeightDependence(w_min = 0.0, w_max = 1.0, A_plus = param_scale * 0.0, A_minus = param_scale * 7.1e-3, A3_plus = param_scale * 6.5e-3, A3_minus = param_scale * 0.0)
)
projections[-1].append(sim.Projection(pre_pop, post_pop, sim.OneToOneConnector(weights = start_w),
synapse_dynamics = sim.SynapseDynamics(slow = stdp_model)
))
print("Simulating for %us" % (sim_time / 1000))
# Run simulation
sim.run(sim_time)
# Read weights from each parameter value being tested
weights = []
for projection_delta_t in projections:
weights.append([p.getWeights()[0] for p in projection_delta_t])
# End simulation on SpiNNaker
sim.end(stop_on_board=True)
#-------------------------------------------------------------------
# Plotting
#-------------------------------------------------------------------
# Sjostrom et al. (2001) experimental data
data_w = [
[ -0.29, -0.41, -0.34, 0.56, 0.75 ],
开发者ID:Paul92,项目名称:sPyNNaker,代码行数:30,代码来源:stdp_triplet.py
示例18: range
spike_sourceE = sim.Population(1, sim.SpikeSourceArray, {'spike_times': [float(i) for i in range(5,105,10)]})
spike_sourceI = sim.Population(1, sim.SpikeSourceArray, {'spike_times': [float(i) for i in range(155,255,10)]})
sim.Projection(spike_sourceE, exp_cell, sim.OneToOneConnector(weights=0.15, delays=2.0), target='excitatory')
sim.Projection(spike_sourceI, exp_cell, sim.OneToOneConnector(weights=-0.15, delays=4.0), target='inhibitory')
sim.Projection(spike_sourceE, stoc_cell, sim.OneToOneConnector(weights=0.15, delays=2.0), target='excitatory')
sim.Projection(spike_sourceI, stoc_cell, sim.OneToOneConnector(weights=-0.15, delays=4.0), target='inhibitory')
stoc_cell.record_gsyn()
exp_cell.record_gsyn()
stoc_cell.record_v()
exp_cell.record_v()
stoc_cell.record()
exp_cell.record()
sim.run(200.0)
v_delta = stoc_cell.get_v()
i_delta = stoc_cell.get_gsyn()
v_exp = exp_cell.get_v()
i_exp = exp_cell.get_gsyn()
# Plot
fig, axis = pylab.subplots(2)
axis[0].plot(v_delta[:,1], v_delta[:,2], label="Stochastic")
axis[0].plot(v_exp[:,1], v_exp[:,2], label="Static")
axis[0].set_title("Voltage")
axis[0].legend()
axis[1].plot(i_delta[:,1], i_delta[:,2], label="Stochastic")
开发者ID:ericnichols,项目名称:sPyNNakerExtraModelsPlugin,代码行数:31,代码来源:IF_cond_exp_stoc.py
示例19:
# Record excitatory spikes
ex_pop.record()
# Make excitatory->inhibitory projections
sim.Projection(ex_pop, in_pop, sim.FixedProbabilityConnector(0.02, weights=0.03), target='excitatory')
sim.Projection(ex_pop, ex_pop, sim.FixedProbabilityConnector(0.02, weights=0.03), target='excitatory')
# Make inhibitory->inhibitory projections
sim.Projection(in_pop, in_pop, sim.FixedProbabilityConnector(0.02, weights=-0.3), target='inhibitory')
# Build inhibitory plasticity model
stdp_model = sim.STDPMechanism(
timing_dependence = extra_sim.Vogels2011Rule(alpha=0.12,tau=20.0),
weight_dependence = sim.AdditiveWeightDependence(w_min=0.0, w_max=1.0, A_plus=0.0005),
mad=True
)
# Make inhibitory->excitatory projections
sim.Projection(in_pop, ex_pop, sim.FixedProbabilityConnector(0.02, weights=0), target='inhibitory',
synapse_dynamics=sim.SynapseDynamics(slow=stdp_model))
# Activate live output for excitatory spikes
ext.activate_live_output_for(ex_pop)
ext.activate_live_output_for(in_pop)
# Run simulation
sim.run(5000)
# End simulation on SpiNNaker
sim.end()
开发者ID:ericnichols,项目名称:sPyNNakerExtraModelsPlugin,代码行数:30,代码来源:vogels_2011_live.py
示例20: test_print_spikes
def test_print_spikes(self):
machine_time_step = 0.1
p.setup(timestep=machine_time_step, min_delay=1.0, max_delay=14.40)
n_neurons = 20 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
weight_to_spike = 2.0
delay = 1.7
loop_connections = list()
for i in range(0, n_neurons):
single_connection = (i, ((i + 1) % n_neurons), weight_to_spike,
delay)
loop_connections.append(single_connection)
injection_connection = [(0, 0, weight_to_spike, 1)]
spike_array = {'spike_times': [[0]]}
populations.append(p.Population(n_neurons, p.IF_curr_exp,
cell_params_lif,
label='pop_1'))
populations.append(p.Population(1, p.SpikeSourceArray, spike_array,
label='inputSpikes_1'))
projections.append(p.Projection(populations[0], populations[0],
p.FromListConnector(loop_connections)))
projections.append(p.Projection(populations[1], populations[0],
p.FromListConnector(injection_connection)))
populations[0].record_v()
populations[0].record_gsyn()
populations[0].record()
p.run(500)
spikes = populations[0].getSpikes(compatible_output=True)
current_file_path = os.path.dirname(os.path.abspath(__file__))
current_file_path = os.path.join(current_file_path, "spikes.data")
spike_file = populations[0].printSpikes(current_file_path)
spike_reader = p.utility_calls.read_spikes_from_file(
current_file_path, min_atom=0, max_atom=n_neurons,
min_time=0, max_time=500)
read_in_spikes = spike_reader.spike_times
p.end()
os.remove(current_file_path)
for spike_element, read_element in zip(spikes, read_in_spikes):
self.assertEqual(round(spike_element[0], 1),
round(read_element[0], 1))
self.assertEqual(round(spike_element[1], 1),
round(read_element[1], 1))
开发者ID:Paul92,项目名称:sPyNNaker,代码行数:68,代码来源:synfire_0.1_timestep_test_print_spikes.py
注:本文中的spynnaker.pyNN.run函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论