本文整理汇总了Python中spynnaker.pyNN.set_number_of_neurons_per_core函数的典型用法代码示例。如果您正苦于以下问题:Python set_number_of_neurons_per_core函数的具体用法?Python set_number_of_neurons_per_core怎么用?Python set_number_of_neurons_per_core使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了set_number_of_neurons_per_core函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_script
def test_script(self):
"""
test that tests the printing of v from a pre determined recording
:return:
"""
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
n_neurons = 128 * 128 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_cond_exp", 256)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0,
'e_rev_E': 0.,
'e_rev_I': -80.
}
populations = list()
projections = list()
weight_to_spike = 0.035
delay = 17
spikes = read_spikefile('test.spikes', n_neurons)
print spikes
spike_array = {'spike_times': spikes}
populations.append(p.Population(
n_neurons, p.SpikeSourceArray, spike_array, label='inputSpikes_1'))
populations.append(p.Population(
n_neurons, p.IF_cond_exp, cell_params_lif, label='pop_1'))
projections.append(p.Projection(
populations[0], populations[1], p.OneToOneConnector(
weights=weight_to_spike, delays=delay)))
populations[1].record()
p.run(1000)
spikes = populations[1].getSpikes(compatible_output=True)
if spikes is not None:
print spikes
pylab.figure()
pylab.plot([i[1] for i in spikes], [i[0] for i in spikes], ".")
pylab.xlabel('Time/ms')
pylab.ylabel('spikes')
pylab.title('spikes')
pylab.show()
else:
print "No spikes received"
p.end()
开发者ID:Paul92,项目名称:sPyNNaker,代码行数:57,代码来源:read_spike_file_1.0_time_step.py
示例2: test_recording_numerious_element_over_limit
def test_recording_numerious_element_over_limit(self):
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
n_neurons = 2000 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
boxed_array = numpy.zeros(shape=(0, 2))
spike_array = list()
for neuron_id in range(0, n_neurons):
spike_array.append(list())
for random_time in range(0, 200000):
random_time2 = random.randint(0, 50000)
boxed_array = numpy.append(
boxed_array, [[neuron_id, random_time2]], axis=0)
spike_array[neuron_id].append(random_time)
spike_array_params = {'spike_times': spike_array}
populations.append(p.Population(n_neurons, p.IF_curr_exp,
cell_params_lif,
label='pop_1'))
populations.append(p.Population(n_neurons, p.SpikeSourceArray,
spike_array_params,
label='inputSpikes_1'))
projections.append(p.Projection(populations[1], populations[0],
p.OneToOneConnector()))
populations[1].record()
p.run(50000)
spike_array_spikes = populations[1].getSpikes()
boxed_array = boxed_array[numpy.lexsort((boxed_array[:, 1],
boxed_array[:, 0]))]
numpy.testing.assert_array_equal(spike_array_spikes, boxed_array)
p.end()
开发者ID:apdavison,项目名称:sPyNNaker,代码行数:48,代码来源:test_spike_source_array.py
示例3: test_get_weights
def test_get_weights(self):
# Population parameters
cell_params = {
'cm': 0.2, # nF
'i_offset': 0.2,
'tau_m': 20.0,
'tau_refrac': 5.0,
'tau_syn_E': 5.0,
'tau_syn_I': 10.0,
'v_reset': -60.0,
'v_rest': -60.0,
'v_thresh': -50.0
}
# Reduce number of neurons to simulate on each core
sim.set_number_of_neurons_per_core(sim.IF_curr_exp, 100)
# Build inhibitory plasticity model
stdp_model = sim.STDPMechanism(
timing_dependence=sim.SpikePairRule(
tau_plus=20.0, tau_minus=12.7, nearest=True),
weight_dependence=sim.AdditiveWeightDependence(
w_min=0.0, w_max=1.0, A_plus=0.05),
mad=True
)
# Build plastic network
plastic_ex_pop, plastic_ie_projection =\
self.build_network(sim.SynapseDynamics(slow=stdp_model),
cell_params)
# Run simulation
sim.run(10000)
# Get plastic spikes and save to disk
plastic_spikes = plastic_ex_pop.getSpikes(compatible_output=True)
#numpy.save("plastic_spikes.npy", plastic_spikes)
plastic_weights = plastic_ie_projection.getWeights(format="array")
# mean_weight = numpy.average(plastic_weights)
# End simulation on SpiNNaker
sim.end()
开发者ID:Paul92,项目名称:sPyNNaker,代码行数:43,代码来源:stdp_to_read_get_weights_master_pop_binary.py
示例4: test_recording_1_element
def test_recording_1_element(self):
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
n_neurons = 200 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
spike_array = {'spike_times': [[0]]}
populations.append(p.Population(n_neurons, p.IF_curr_exp,
cell_params_lif,
label='pop_1'))
populations.append(p.Population(1, p.SpikeSourceArray, spike_array,
label='inputSpikes_1'))
projections.append(p.Projection(populations[0], populations[0],
p.OneToOneConnector()))
populations[1].record()
p.run(5000)
spike_array_spikes = populations[1].getSpikes()
boxed_array = numpy.zeros(shape=(0, 2))
boxed_array = numpy.append(boxed_array, [[0, 0]], axis=0)
numpy.testing.assert_array_equal(spike_array_spikes, boxed_array)
p.end()
开发者ID:apdavison,项目名称:sPyNNaker,代码行数:39,代码来源:test_spike_source_array.py
示例5: test_recording_poisson_spikes_rate_0
def test_recording_poisson_spikes_rate_0(self):
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
n_neurons = 256 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
populations.append(p.Population(n_neurons, p.IF_curr_exp,
cell_params_lif,
label='pop_1'))
populations.append(p.Population(n_neurons, p.SpikeSourcePoisson,
{'rate': 0},
label='inputSpikes_1'))
projections.append(p.Projection(populations[1], populations[0],
p.OneToOneConnector()))
populations[1].record()
p.run(5000)
spikes = populations[1].getSpikes()
print spikes
p.end()
开发者ID:SpikeFrame,项目名称:sPyNNaker,代码行数:38,代码来源:test_poisson_spike_source.py
示例6: list
"""
Synfirechain-like example
"""
import spynnaker.pyNN as p
import pylab
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
nNeurons = 200 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_curr_exp", nNeurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
weight_to_spike = 2.0
delay = 17
loopConnections = list()
for i in range(0, nNeurons):
singleConnection = (i, ((i + 1) % nNeurons), weight_to_spike, delay)
开发者ID:ruthvik92,项目名称:PyNNExamples,代码行数:31,代码来源:synfire_if_curr_exp.py
示例7: list
"""
Synfirechain-like example
"""
#!/usr/bin/python
import pylab
import spynnaker.pyNN as p
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
nNeurons = 200 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_curr_exp", 10)
cell_params_lif = {'cm' : 0.25, # nF
'i_offset' : 0.0,
'tau_m' : 20.0,
'tau_refrac': 2.0,
'tau_syn_E' : 5.0,
'tau_syn_I' : 5.0,
'v_reset' : -70.0,
'v_rest' : -65.0,
'v_thresh' : -50.0
}
populations = list()
projections = list()
weight_to_spike = 2.0
delay = 1
开发者ID:SpikeFrame,项目名称:sPyNNaker,代码行数:30,代码来源:synfire_200n_10pc_2chips_with_no_delays_spike_recording.py
示例8: test_get_voltage
def test_get_voltage(self):
"""
test that tests the getting of v from a pre determined recording
:return:
"""
p.setup(timestep=0.1, min_delay=1.0, max_delay=14.40)
n_neurons = 200 # number of neurons in each population
runtime = 500
p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
weight_to_spike = 2.0
delay = 1.7
loop_connections = list()
for i in range(0, n_neurons):
single_connection = (i, ((i + 1) % n_neurons), weight_to_spike,
delay)
loop_connections.append(single_connection)
injection_connection = [(0, 0, weight_to_spike, 1)]
spike_array = {'spike_times': [[0]]}
populations.append(p.Population(n_neurons, p.IF_curr_exp, cell_params_lif,
label='pop_1'))
populations.append(p.Population(1, p.SpikeSourceArray, spike_array,
label='inputSpikes_1'))
projections.append(p.Projection(populations[0], populations[0],
p.FromListConnector(loop_connections)))
projections.append(p.Projection(populations[1], populations[0],
p.FromListConnector(injection_connection)))
populations[0].record_v()
populations[0].record_gsyn()
populations[0].record()
p.run(runtime)
v = populations[0].get_v(compatible_output=True)
current_file_path = os.path.dirname(os.path.abspath(__file__))
current_file_path = os.path.join(current_file_path, "v.data")
pre_recorded_data = p.utility_calls.read_in_data_from_file(
current_file_path, 0, n_neurons, 0, runtime)
p.end()
for spike_element, read_element in zip(v, pre_recorded_data):
self.assertEqual(round(spike_element[0], 1),
round(read_element[0], 1))
self.assertEqual(round(spike_element[1], 1),
round(read_element[1], 1))
self.assertEqual(round(spike_element[2], 1),
round(read_element[2], 1))
开发者ID:Paul92,项目名称:sPyNNaker,代码行数:67,代码来源:synfire_0.1_timestep_test_get_v.py
示例9: test_get_spikes
def test_get_spikes(self):
"""
test for get spikes
:return:
"""
p.setup(timestep=1, min_delay=1.0, max_delay=14.40)
n_neurons = 200 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
weight_to_spike = 2.0
delay = 1.7
loop_connections = list()
for i in range(0, n_neurons):
single_connection = (i, ((i + 1) % n_neurons), weight_to_spike, delay)
loop_connections.append(single_connection)
injection_connection = [(0, 0, weight_to_spike, 1)]
spike_array = {'spike_times': [[0]]}
populations.append(p.Population(n_neurons, p.IF_curr_exp, cell_params_lif,
label='pop_1'))
populations.append(p.Population(1, p.SpikeSourceArray, spike_array,
label='inputSpikes_1'))
projections.append(p.Projection(populations[0], populations[0],
p.FromListConnector(loop_connections)))
projections.append(p.Projection(populations[1], populations[0],
p.FromListConnector(injection_connection)))
populations[0].record_v()
populations[0].record_gsyn()
populations[0].record()
p.run(500)
spikes = populations[0].getSpikes(compatible_output=True)
pre_recorded_spikes = [
[0, 3.5], [1, 6.7], [2, 9.9], [3, 13.1], [4, 16.3],
[5, 19.5], [6, 22.7], [7, 25.9], [8, 29.1],
[9, 32.3], [10, 35.5], [11, 38.7], [12, 41.9],
[13, 45.1], [14, 48.3], [15, 51.5], [16, 54.7],
[17, 57.9], [18, 61.1], [19, 64.3], [20, 67.5],
[21, 70.7], [22, 73.9], [23, 77.1], [24, 80.3],
[25, 83.5], [26, 86.7], [27, 89.9], [28, 93.1],
[29, 96.3], [30, 99.5], [31, 102.7], [32, 105.9],
[33, 109.1], [34, 112.3], [35, 115.5], [36, 118.7],
[37, 121.9], [38, 125.1], [39, 128.3], [40, 131.5],
[41, 134.7], [42, 137.9], [43, 141.1], [44, 144.3],
[45, 147.5], [46, 150.7], [47, 153.9], [48, 157.1],
[49, 160.3], [50, 163.5], [51, 166.7], [52, 169.9],
[53, 173.1], [54, 176.3], [55, 179.5], [56, 182.7],
[57, 185.9], [58, 189.1], [59, 192.3], [60, 195.5]]
p.end()
for spike_element, read_element in zip(spikes, pre_recorded_spikes):
self.assertEqual(round(spike_element[0], 1),
round(read_element[0], 1))
self.assertEqual(round(spike_element[1], 1),
round(read_element[1], 1))
开发者ID:Paul92,项目名称:sPyNNaker,代码行数:74,代码来源:synfire_1.0_timestep_test_get_spikes.py
示例10: build_network
'tau_m' : 20.0,
'tau_refrac': 5.0,
'tau_syn_E' : 5.0,
'tau_syn_I' : 10.0,
'v_reset' : -60.0,
'v_rest' : -60.0,
'v_thresh' : -50.0
}
# How large should the population of excitatory neurons be?
# (Number of inhibitory neurons is proportional to this)
NUM_EXCITATORY = 2000
# Reduce number of neurons to simulate on each core
sim.set_number_of_neurons_per_core(sim.IF_curr_exp, 100)
# Function to build the basic network - dynamics should be a PyNN synapse dynamics object
def build_network(dynamics):
# SpiNNaker setup
sim.setup(timestep=1.0, min_delay=1.0, max_delay=10.0)
# Create excitatory and inhibitory populations of neurons
ex_pop = sim.Population(NUM_EXCITATORY, model, cell_params)
in_pop = sim.Population(NUM_EXCITATORY / 4, model, cell_params)
# Record excitatory spikes
ex_pop.record()
# Make excitatory->inhibitory projections
sim.Projection(ex_pop, in_pop, sim.FixedProbabilityConnector(0.02, weights=0.03), target='excitatory')
开发者ID:ericnichols,项目名称:sPyNNakerExtraModelsPlugin,代码行数:31,代码来源:vogels_2011.py
示例11: list
"""
Synfirechain-like example
"""
import spynnaker.pyNN as p
import pylab
from fake_if_curr import FakeIFCurrExp
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
nNeurons = 200 # number of neurons in each population
p.set_number_of_neurons_per_core(FakeIFCurrExp, nNeurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
weight_to_spike = 2.0
delay = 17
loopConnections = list()
for i in range(0, nNeurons):
开发者ID:SpikeFrame,项目名称:sPyNNaker,代码行数:31,代码来源:provenance_when_not_finished_test.py
示例12: test_print_spikes
def test_print_spikes(self):
machine_time_step = 0.1
p.setup(timestep=machine_time_step, min_delay=1.0, max_delay=14.40)
n_neurons = 20 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
weight_to_spike = 2.0
delay = 1.7
loop_connections = list()
for i in range(0, n_neurons):
single_connection = (i, ((i + 1) % n_neurons), weight_to_spike,
delay)
loop_connections.append(single_connection)
injection_connection = [(0, 0, weight_to_spike, 1)]
spike_array = {'spike_times': [[0]]}
populations.append(p.Population(n_neurons, p.IF_curr_exp,
cell_params_lif,
label='pop_1'))
populations.append(p.Population(1, p.SpikeSourceArray, spike_array,
label='inputSpikes_1'))
projections.append(p.Projection(populations[0], populations[0],
p.FromListConnector(loop_connections)))
projections.append(p.Projection(populations[1], populations[0],
p.FromListConnector(injection_connection)))
populations[0].record_v()
populations[0].record_gsyn()
populations[0].record()
p.run(500)
spikes = populations[0].getSpikes(compatible_output=True)
current_file_path = os.path.dirname(os.path.abspath(__file__))
current_file_path = os.path.join(current_file_path, "spikes.data")
spike_file = populations[0].printSpikes(current_file_path)
spike_reader = p.utility_calls.read_spikes_from_file(
current_file_path, min_atom=0, max_atom=n_neurons,
min_time=0, max_time=500)
read_in_spikes = spike_reader.spike_times
p.end()
os.remove(current_file_path)
for spike_element, read_element in zip(spikes, read_in_spikes):
self.assertEqual(round(spike_element[0], 1),
round(read_element[0], 1))
self.assertEqual(round(spike_element[1], 1),
round(read_element[1], 1))
开发者ID:Paul92,项目名称:sPyNNaker,代码行数:68,代码来源:synfire_0.1_timestep_test_print_spikes.py
示例13: test_something
def test_something(self):
#!/usr/bin/python
import pylab
import spynnaker.pyNN as p
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
nNeurons = 200 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_curr_exp", nNeurons / 2)
cell_params_lif = {'cm' : 0.25, # nF
'i_offset' : 0.0,
'tau_m' : 20.0,
'tau_refrac': 2.0,
'tau_syn_E' : 5.0,
'tau_syn_I' : 5.0,
'v_reset' : -70.0,
'v_rest' : -65.0,
'v_thresh' : -50.0
}
populations = list()
projections = list()
weight_to_spike = 2.0
delay = 17
loop_connections = list()
for i in range(0, nNeurons):
single_connection = (i, ((i + 1) % nNeurons),
weight_to_spike, delay)
loop_connections.append(single_connection)
injection_connection = [(0, 0, weight_to_spike, 1)]
spike_array = {'spike_times': [[0]]}
populations.append(p.Population(nNeurons, p.IF_curr_exp,
cell_params_lif, label='pop_1'))
populations.append(p.Population(1, p.SpikeSourceArray,
spike_array, label='inputSpikes_1'))
projections.append(
p.Projection(populations[0], populations[0],
p.FromListConnector(loop_connections)))
projections.append(
p.Projection(populations[1], populations[0],
p.FromListConnector(injection_connection)))
populations[0].record_v()
#populations[0].record_gsyn()
#populations[0].record(visualiser_mode=p.VISUALISER_MODES.RASTER)
p.run(5000)
v = None
gsyn = None
spikes = None
v = populations[0].get_v(compatible_output=True)
#assert(v == )
#gsyn = populations[0].get_gsyn(compatible_output=True)
#spikes = populations[0].getSpikes(compatible_output=True)
if spikes is not None:
print spikes
pylab.figure()
pylab.plot([i[1] for i in spikes], [i[0] for i in spikes], ".")
pylab.xlabel('Time/ms')
pylab.ylabel('spikes')
pylab.title('spikes')
pylab.show()
else:
print "No spikes received"
# Make some graphs
if v is not None:
ticks = len(v) / nNeurons
pylab.figure()
pylab.xlabel('Time/ms')
pylab.ylabel('v')
pylab.title('v')
for pos in range(0, nNeurons, 20):
v_for_neuron = v[pos * ticks : (pos + 1) * ticks]
pylab.plot([i[1] for i in v_for_neuron],
[i[2] for i in v_for_neuron])
pylab.show()
if gsyn is not None:
ticks = len(gsyn) / nNeurons
pylab.figure()
pylab.xlabel('Time/ms')
pylab.ylabel('gsyn')
pylab.title('gsyn')
for pos in range(0, nNeurons, 20):
gsyn_for_neuron = gsyn[pos * ticks : (pos + 1) * ticks]
#.........这里部分代码省略.........
开发者ID:Paul92,项目名称:sPyNNaker,代码行数:101,代码来源:synfire_200n_100pc_with_delays_v_recording.py
示例14: range
spike_list = {'spike_times': [float(x) for x in range(0, 599, 50)]}
#p.setup(timestep=1.0, min_delay = 1.0, max_delay = 32.0)
p.setup(timestep=1.0, min_delay = 1.0, max_delay = 32.0)
#p.set_number_of_neurons_per_core("SpikeSourceArray", 256) #FAILS
#nNeurons = (256*3)-2 # number of neurons in each population #FAIL
#p.set_number_of_neurons_per_core("SpikeSourceArray", 6) # works
#nNeurons = 18 # number of neurons in each population # works
#p.set_number_of_neurons_per_core("SpikeSourceArray", 200) #FAILS
#nNeurons = (600) # number of neurons in each population #FAIL
#p.set_number_of_neurons_per_core("SpikeSourceArray", 150) #FAILS
#nNeurons = (600) # number of neurons in each population #FAIL
#p.set_number_of_neurons_per_core("SpikeSourceArray", 100) #FAILS
#nNeurons = (600) # number of neurons in each population #FAIL
p.set_number_of_neurons_per_core("SpikeSourceArray", 100) #FAILS
nNeurons = (600) # number of neurons in each population #FAIL
populations = list()
projections = list()
populations.append(p.Population(nNeurons, p.SpikeSourceArray, spike_list, label='input'))
populations.append(p.Population(1, p.IF_curr_exp, cell_params_lif, label='pop_1'))
projections.append(p.Projection(populations[0], populations[1], p.AllToAllConnector()))
populations[0].record()
p.run(1000)
spikes = populations[0].getSpikes(compatible_output=True)
开发者ID:Paul92,项目名称:sPyNNaker,代码行数:31,代码来源:bigMultiProcessorSpikeSourcePrint.py
示例15:
"v_rest": -65.0,
"v_thresh": -55.4,
}
# Other simulation parameters
e_rate = 200
in_rate = 350
n_stim_test = 5
n_stim_pairing = 10
dur_stim = 20
pop_size = 40
sim.set_number_of_neurons_per_core(model, 10)
ISI = 150.0
start_test_pre_pairing = 200.0
start_pairing = 1500.0
start_test_post_pairing = 700.0
simtime = start_pairing + start_test_post_pairing + ISI * (n_stim_pairing + n_stim_test) + 550.0 # let's make it 5000
# Initialisations of the different types of populations
IAddPre = []
IAddPost = []
# +-------------------------------------------------------------------+
# | Creation of neuron populations |
# +-------------------------------------------------------------------+
开发者ID:gtrGitHub,项目名称:sPyNNaker,代码行数:31,代码来源:stdp_example_2.py
注:本文中的spynnaker.pyNN.set_number_of_neurons_per_core函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论