Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
182 views
in Technique[技术] by (71.8m points)

c++ - Convert template function to generic lambda

I'd like to pass templated functions around as if they were generic lambdas, however this does not work.

#include <iostream>
#include <vector>
#include <tuple>
#include <string>
#include <utility> 


// for_each with std::tuple
// (from https://stackoverflow.com/a/6894436/1583122)
template<std::size_t I = 0, typename FuncT, typename... Tp>
inline typename std::enable_if<I == sizeof...(Tp), void>::type
for_each(std::tuple<Tp...> &, FuncT)
{}

template<std::size_t I = 0, typename FuncT, typename... Tp>
inline typename std::enable_if<I < sizeof...(Tp), void>::type
for_each(std::tuple<Tp...>& t, FuncT f) {
    f(std::get<I>(t));
    for_each<I + 1, FuncT, Tp...>(t, f);
}

// my code
template<class T> auto
print(const std::vector<T>& v) -> void {
    for (const auto& e : v) {
        std::cout << e << "";
    }
}

struct print_wrapper {
    template<class T>
    auto operator()(const std::vector<T>& v) {
        print(v);
    }
};

auto print_gen_lambda = [](const auto& v){ print(v); };

auto print_gen_lambda_2 = []<class T>(const std::vector<T>& v){ print(v); }; // proposal P0428R1, gcc extension in c++14/c++17

int main() {
     std::tuple<std::vector<int>,std::vector<double>,std::vector<std::string>> t = { {42,43},{3.14,2.7},{"Hello","World"}};
    for_each(t, print); // case 1: error: template argument deduction/substitution failed: couldn't deduce template parameter 'FuncT'
    for_each(t, print_wrapper()); // case 2: ok
    for_each(t, print_gen_lambda); // case 3: ok
    for_each(t, print_gen_lambda_2); // case 4: ok
}

Note that case 2 and 4 are strictly equivalent. Case 3 is more general but unconstrained (this is a problem for me). I think that case 1 should be treated equivalently to cases 2 and 4 by the language, however this is not the case.

  • Is there a proposal to implicitly convert a template function to a generic constrained lambda (case 2/4)? If no, is there a fundamental language reason that prevents from doing so?
  • As of now, I have to use case 2, which is quite cumbersome.
    • case 4: not c++14-compliant, even if should be standard in c++20, and still not perfect (verbose since you create a lambda that fundamentally does not add any information).
    • case 3: is unconstrained, but I rely (not shown here) on substitution failure for calls to "print" with non-"vector" arguments (P0428R1 mentions this problem). So I guess the subsidiary question is "Can I constrain a generic lambda with some enable_if tricks?"

Is there, in C++14/17/20, a very terse manner to enable the conversion from case 1 to case 2? I am even open to macro hacks.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Is there, in C++14/17/20, a very terse manner to enable the conversion from case 1 to case 2? I am even open to macro hacks.

Yes.

// C++ requires you to type out the same function body three times to obtain
// SFINAE-friendliness and noexcept-correctness. That's unacceptable.
#define RETURNS(...) noexcept(noexcept(__VA_ARGS__)) 
     -> decltype(__VA_ARGS__){ return __VA_ARGS__; }

// The name of overload sets can be legally used as part of a function call -
// we can use a macro to create a lambda for us that "lifts" the overload set
// into a function object.
#define LIFT(f) [](auto&&... xs) RETURNS(f(::std::forward<decltype(xs)>(xs)...))

You can then say:

for_each(t, LIFT(print)); 

Is there a proposal to implicitly convert a template function to a generic constrained lambda?

Yes, look at P0119 or N3617. Not sure about their status.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...