IIUIC, use value_counts()
In [3361]: df.Firm_Name.str.split(expand=True).stack().value_counts()
Out[3361]:
Society 3
Ltd 2
James's 1
R.X. 1
Yah 1
Associates 1
St 1
Kensington 1
MMV 1
Big 1
& 1
The 1
Co 1
Oil 1
Building 1
dtype: int64
Or,
pd.Series(np.concatenate([x.split() for x in df.Firm_Name])).value_counts()
Or,
pd.Series(' '.join(df.Firm_Name).split()).value_counts()
For top N, for example 3
In [3379]: pd.Series(' '.join(df.Firm_Name).split()).value_counts()[:3]
Out[3379]:
Society 3
Ltd 2
James's 1
dtype: int64
Details
In [3380]: df
Out[3380]:
URN Firm_Name
0 104472 R.X. Yah & Co
1 104873 Big Building Society
2 109986 St James's Society
3 114058 The Kensington Society Ltd
4 113438 MMV Oil Associates Ltd
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…