Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
98 views
in Technique[技术] by (71.8m points)

c++ - Eigen: Coding style's effect on performance

From what I've read about Eigen (here), it seems that operator=() acts as a "barrier" of sorts for lazy evaluation -- e.g. it causes Eigen to stop returning expression templates and actually perform the (optimized) computation, storing the result into the left-hand side of the =.

This would seem to mean that one's "coding style" has an impact on performance -- i.e. using named variables to store the result of intermediate computations might have a negative effect on performance by causing some portions of the computation to be evaluated "too early".

To try to verify my intuition, I wrote up an example and was surprised at the results (full code here):

using ArrayXf  = Eigen::Array <float, Eigen::Dynamic, Eigen::Dynamic>;
using ArrayXcf = Eigen::Array <std::complex<float>, Eigen::Dynamic, Eigen::Dynamic>;

float test1( const MatrixXcf & mat )
{
    ArrayXcf arr  = mat.array();
    ArrayXcf conj = arr.conjugate();
    ArrayXcf magc = arr * conj;
    ArrayXf  mag  = magc.real();
    return mag.sum();
}

float test2( const MatrixXcf & mat )
{
    return ( mat.array() * mat.array().conjugate() ).real().sum();
}

float test3( const MatrixXcf & mat )
{
    ArrayXcf magc   = ( mat.array() * mat.array().conjugate() );

    ArrayXf mag     = magc.real();
    return mag.sum();
}

The above gives 3 different ways of computing the coefficient-wise sum of magnitudes in a complex-valued matrix.

  1. test1 sort of takes each portion of the computation "one step at a time."
  2. test2 does the whole computation in one expression.
  3. test3 takes a "blended" approach -- with some amount of intermediate variables.

I sort of expected that since test2 packs the entire computation into one expression, Eigen would be able to take advantage of that and globally optimize the entire computation, providing the best performance.

However, the results were surprising (numbers shown are in total microseconds across 1000 executions of each test):

test1_us: 154994
test2_us: 365231
test3_us: 36613

(This was compiled with g++ -O3 -- see the gist for full details.)

The version I expected to be fastest (test2) was actually slowest. Also, the version that I expected to be slowest (test1) was actually in the middle.

So, my questions are:

  1. Why does test3 perform so much better than the alternatives?
  2. Is there a technique one can use (short of diving into the assembly code) to get some visibility into how Eigen is actually implementing your computations?
  3. Is there a set of guidelines to follow to strike a good tradeoff between performance and readability (use of intermediate variables) in your Eigen code?

In more complex computations, doing everything in one expression could hinder readability, so I'm interested in finding the right way to write code that is both readable and performant.

question from:https://stackoverflow.com/questions/37658651/eigen-coding-styles-effect-on-performance

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

It looks like a problem of GCC. Intel compiler gives the expected result.

$ g++ -I ~/program/include/eigen3 -std=c++11 -O3 a.cpp -o a && ./a
test1_us: 200087
test2_us: 320033
test3_us: 44539

$ icpc -I ~/program/include/eigen3 -std=c++11 -O3 a.cpp -o a && ./a
test1_us: 214537
test2_us: 23022
test3_us: 42099

Compared to the icpc version, gcc seems to have problem optimizing your test2.

For more precise result, you may want to turn off the debug assertions by -DNDEBUG as shown here.

EDIT

For question 1

@ggael gives an excellent answer that gcc fails vectorizing the sum loop. My experiment also find that test2 is as fast as the hand-written naive for-loop, both with gcc and icc, suggesting that vectorization is the reason, and no temporary memory allocation is detected in test2 by the method mentioned below, suggesting that Eigen evaluate the expression correctly.

For question 2

Avoiding the intermediate memory is the main purpose that Eigen use expression templates. So Eigen provides a macro EIGEN_RUNTIME_NO_MALLOC and a simple function to enable you check whether an intermediate memory is allocated during calculating the expression. You can find a sample code here. Please note this may only work in debug mode.

EIGEN_RUNTIME_NO_MALLOC - if defined, a new switch is introduced which can be turned on and off by calling set_is_malloc_allowed(bool). If malloc is not allowed and Eigen tries to allocate memory dynamically anyway, an assertion failure results. Not defined by default.

For question 3

There is a way to use intermediate variables, and to get the performance improvement introduced by lazy evaluation/expression templates at the same time.

The way is to use intermediate variables with correct data type. Instead of using Eigen::Matrix/Array, which instructs the expression to be evaluated, you should use the expression type Eigen::MatrixBase/ArrayBase/DenseBase so that the expression is only buffered but not evaluated. This means you should store the expression as intermediate, rather than the result of the expression, with the condition that this intermediate will only be used once in the following code.

As determing the template parameters in the expression type Eigen::MatrixBase/... could be painful, you could use auto instead. You could find some hints on when you should/should not use auto/expression types in this page. Another page also tells you how to pass the expressions as function parameters without evaluating them.

According to the instructive experiment about .abs2() in @ggael 's answer, I think another guideline is to avoid reinventing the wheel.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...