When I started to train some neural network, it met the CUDA_ERROR_OUT_OF_MEMORY
but the training could go on without error. Because I wanted to use gpu memory as it really needs, so I set the gpu_options.allow_growth = True
.The logs are as follows:
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcurand.so locally
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:925] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_device.cc:951] Found device 0 with properties:
name: GeForce GTX 1080
major: 6 minor: 1 memoryClockRate (GHz) 1.7335
pciBusID 0000:01:00.0
Total memory: 7.92GiB
Free memory: 7.81GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:972] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:1041] Creating TensorFlow device (/gpu:0) -> (device:0, name: GeForce GTX 1080, pci bus id: 0000:01:00.0)
E tensorflow/stream_executor/cuda/cuda_driver.cc:965] failed to allocate 4.00G (4294967296 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
Iter 20, Minibatch Loss= 40491.636719
...
And after using nvidia-smi
command, it gets:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 367.27 Driver Version: 367.27
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M.
|===============================+======================+======================|
| 0 GeForce GTX 1080 Off | 0000:01:00.0 Off | N/A |
| 40% 61C P2 46W / 180W | 8107MiB / 8111MiB | 96% Default |
+-------------------------------+----------------------+----------------------+
| 1 GeForce GTX 1080 Off | 0000:02:00.0 Off | N/A |
| 0% 40C P0 40W / 180W | 0MiB / 8113MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
│
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 22932 C python 8105MiB |
+-----------------------------------------------------------------------------+
After I commented the gpu_options.allow_growth = True
, I trained the net again and everything was normal. There was no the problem of CUDA_ERROR_OUT_OF_MEMORY
. Finally, ran the nvidia-smi
command, it gets:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 367.27 Driver Version: 367.27
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M.
|===============================+======================+======================|
| 0 GeForce GTX 1080 Off | 0000:01:00.0 Off | N/A |
| 40% 61C P2 46W / 180W | 7793MiB / 8111MiB | 99% Default |
+-------------------------------+----------------------+----------------------+
| 1 GeForce GTX 1080 Off | 0000:02:00.0 Off | N/A |
| 0% 40C P0 40W / 180W | 0MiB / 8113MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
│
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 22932 C python 7791MiB |
+-----------------------------------------------------------------------------+
I have two questions about it. Why did the CUDA_OUT_OF_MEMORY
come out and the procedure went on normally? why did the memory usage become smaller after commenting allow_growth = True
.
question from:
https://stackoverflow.com/questions/39465503/cuda-error-out-of-memory-in-tensorflow 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…