Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
506 views
in Technique[技术] by (71.8m points)

r - 如何可视化每项研究的百分比对使用R进行的二元结果荟萃分析的总体效应大小摘要的贡献?(How to visualize the percentage of each study contributed to the overall effect size summary of a binary outcome meta analysis using R?)

I am practicing meta-analysis using the built-in "dat.bcg" dataset of "metafor" package.

(我正在使用“ metafor”包的内置“ dat.bcg”数据集练习荟萃分析。)

There I have performed all the primary analysis except the 'percentage of study contribution'.

(除了“研究贡献百分比”外,我已经执行了所有主要分析。)

I have not found how to visualize this.

(我还没有找到如何形象化这一点。)

I am attaching one image for your reference.

(我附上一张图片供您参考。) 在此处输入图片说明

I want to visualize this above-mentioned image.

(我想将上述图像可视化。)

Up until now I have been running the following codes.

(到目前为止,我一直在运行以下代码。)

enter code here library("metafor") enter code here data("dat.bcg", package = "metafor") enter code here print(dat.bcg, row.names = FALSE) enter code here res <- rma(yi, vi, data = dat) enter code here res enter code here res = rma(ai = tpos, bi = tneg, ci = cpos, di = cneg, data = dat, measure = "OR") enter code here res enter code here confint(res) enter code here forest(res, slab = paste(dat$author, dat$year, sep = ", "), xlim = c(-16, 6), at = log(c(0.05, 0.25, 1, 4)), atransf = exp, ilab = cbind(dat$tpos, dat$tneg, dat$cpos, dat$cneg), ilab.xpos = c(-9.5, -8, -6, -4.5), cex = 0.75) enter code here op <- par(cex = 0.75, font = 2) enter code here text(c(-9.5, -8, -6, -4.5), 15, c("TB+", "TB-", "TB+", "TB-")) enter code here text(c(-8.75, -5.25), 16, c("Vaccinated", "Control")) enter code here text(-16, 15, "Author(s) and Year", pos = 4) enter code here text(6, 15, "Relative Risk [95% CI]", pos = 2) enter code here par(op)

(enter code here library(“ metafor”) enter code here data(“ dat.bcg”,package =“ metafor”) enter code here print(dat.bcg,row.names = FALSE) enter code here res <-rma(yi ,vi,数据= dat) enter code here enter code here res = rma(ai = tpos,bi = tneg,ci = cpos,di = cneg,data = dat,measure =“ OR”) enter code here enter code here res enter code here confint(res) enter code here forest(res,slab = paste(dat $ author,dat $ year,sep =“,”),xlim = c(-16,6),at = log(c(0.05,0.25 ,1,4)),atransf = exp,ilab = cbind(dat $ tpos,dat $ tneg,dat $ cpos,dat $ cneg),ilab.xpos = c(-9.5,-8,-6,-4.5) ,cex = 0.75) enter code here op <-par(cex = 0.75,字体= 2) enter code here text(c(-9.5,-8,-6,-4.5),15,c(“ TB +”,“ TB-“,” TB +“,” TB-“))) enter code here text(c(-8.75,-5.25),16,c(” Vaccinated“,” Control“)) enter code here text(-16,15 ,“作者和年份”,pos = 4) enter code here text(6,15,“相对风险[95%CI]”,pos = 2) enter code here par(op))

  ask by Shakil Ahmed Shaon translate from so

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)
等待大神答复

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...