• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Matlab图像处理系列4———傅立叶变换和反变换的图像

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

注意:这一系列实验的图像处理程序,使用Matlab实现最重要的图像处理算法


1.Fourier兑换

(1)频域增强

除了在空间域内能够加工处理图像以外,我们还能够将图像变换到其它空间后进行处理。这些方法称为变换域方法,最常见的变换域是频域

使用Fourier变换把图像从空间域变换到频域。在频域内做对应增强处理,再从频域变换到空间域得到处理后的图像。

我们这里主要学习Fourier变换和FFT变换的算法,没有学过通信原理,我对信号、时域分析也不是非常清楚。


2.FFT算法

(1)离散Fourier变换,DFT

函数f(x)的DFT F(v)的计算式为:

F(v)=x=1Nf(x)ei2πvxN,v=1,2,...,N

非常显然求出全部的长度为N的信号的DFT须要N×O(N)=O(N2)的时间,比較慢,因此我们须要引入时间复杂度为O(NlogN)的FFT算法。

(2)高速Fourier变换,FFT

高速傅立叶变换FFT是利用单位复数根的特殊性质(消去引理和折半引理,见《算法导论》(第3版中文版)P532具体论述)。在O(NlogN)时间内计算出DFT的一种高速算法。

FFT有两种基本实现方式:

  • 递归FFT
  • 迭代FFT。也叫FFT蝶式运算

递归FFT因为递归栈开销大且容量有限等缺陷(但理解easy),一般计算採取迭代FFT实现。

(3)迭代FFT

直接给出算法导论版本号的迭代FFT算法:

当中求逆序数拷贝的函数为:

FFT採用折半迭代的思想,因此速度能减少到O(NlogN)

(4)迭代FFTMatlab实现

Matlab有fft函数,我们也能够自己实现:

function [ fft_m ] = IterativeFFT( vec )
    clear i;

    n = length(vec);

    fft_m = BitReverseCopy(vec);
    for s = 1 : log2(n)
        m = power(2, s);
        wm = exp(- 2 * pi * i / m);

        for k = 0 : m : n - 1
            w = 1;
            for j = 0 : m / 2 - 1
                t = w * fft_m(k + j + m / 2 + 1);
                u = fft_m(k + j + 1);
                fft_m(k + j + 1) = u + t;
                fft_m(k + j + m / 2 + 1) = u - t;
                w = w * wm;
            end
        end
    end
end

BitReverseCopy函数例如以下:

function [ copy ] = BitReverseCopy( vec )
    n = length(vec);
    copy = zeros(1, n);

    bitn = log2(n);

    for i = 0 : n - 1
        revi = bin2dec(fliplr(dec2bin(i, bitn)));
        copy(revi + 1) = vec(i + 1);
    end
end

须要特别注意的是:

  • 一般给出的FFT算法伪代码都是基于下标从零開始的数组。写在Matlab须要考虑映射关系
  • clear i是为了怕之前有变量i和复数记号i混淆,清楚Matlab workspace中的缓存
  • 默认vec是double类型的。因为中间採用很多double类型运算

3.图像的二维Fourier变换

(1)二维DFT

二维DFT定义公式为:

F(u,v)=x=1Ny=1Nf(x,y)ei2π(ux+vy)N,u,v=1,2,...,N

计算一个频域点须要O(N2)的时间,那么整个二维频域计算须要O(N4)的时间,效率非常低。

(2)将二维DFT分解为两个一维DFT

Fourier变换的变换核(公式中和f(x,y)无关的部分)具有对称的性质(详见《图像project(上冊)图像处理》P81),因此利用对称性能够将二维DFT分解为两个一维DFT:
先对二维矩阵的每一列做一维DFT:

F(x,v)=y=1Nf(x,y)ei2πvyN,v=1,2,...,N

再对变换后的矩阵的每一行做一维DFT:

F(u,v)=x=1NF(x,v)ei2πuxN,u=1,2,...,N

最后以2×N×O(N2)=O(N3)的时间完毕二维傅立叶变换。

(3)用一维FFT实现二维FFT

相同的我们能够用两个一维FFT实现二维FFT,时间复杂度O(N2logN)

function [ mfft2 ] = JCGuoFFT2( data )
    h = size(data, 1);
    w = size(data, 2);
    mfft2 = data;

    if power(2, log2(h)) ~= h || power(2, log2(w)) ~= w
        disp(\'JCGuoFFT2 exit: h and w must be the power of 2!\')
    else
        for i = 1 : h
            mfft2(i, :) = IterativeFFT(mfft2(i, :));
        end

        for j = 1 : w
            mfft2(:, j) = IterativeFFT(mfft2(:, j));
        end
    end
end

代码非常简单,先做FFT行变换再做FFT列变换。之前忘记提到。我这里实现的都是长度必须是2的次方的Fourier变换。因此有时候会做一些长度规范检查。

(4)变换结果

经过JCGuoFFT2的二维傅立叶变换,我们能够得到复平面内各个点的复数值,那么显示在图像中须要先求出幅值:

pic1_fft = JCGuoFFT2(double(pic1));
pic1_fft_amp = abs(pic1_fft);

在对幅值做一次log变换得到较好的频域图像:

pic1_fft_amp_log = log(1 + pic1_fft_amp);

绘制结果例如以下图:

(5)低频信号移到图像中心点

因为复数运算的周期特性,图像的Fourier变换在复平面上是全然对称的。能够想象平面是由无限多个上图(右)频域图像拼接而成的二维阵列。一般研究频域图像是把低频部分,也就是变换后的边缘部分移到图像中心点。Matlab提供fftshift函数完毕平移。

平移的思路有两个

  • 通过Fourier变换平移定理先把原始图像做变换再做FFT
  • 先做FFT后再依据频域图像的对称性做对称变换

查阅Matlab文档发现它是採用另外一种方法,对图像做下面子矩阵交换:

那么我们能够非常easy的写出自己的fftshift

function [ after ] = FFTShift( before )
    h = size(before, 1);
    w = size(before, 2);

    after = before;

    if power(2, log2(h)) ~= h || power(2, log2(w)) ~= w
        disp(\'FFTShift exit: h and w must be the power of 2!\')
    else
        hh = h / 2;
        hw = w / 2;
        after(1 : hh, 1 : hw) = before(hh + 1 : h, hw + 1 : w);
        after(1 : hh, hw + 1 : w) = before(hh + 1 : h, 1 : hw);
        after(hh + 1 : h,  
                       
                    
                    

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap