• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

MATLAB 实现 Univariate Linear Regression

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

 这其实是Couseral 上Andrew Ng 的 Machine learning上的作业,提供了几乎所有的框架,只需要我们完成几个函数

1. 画出原始数据图

%% ======================= Part 1: Plotting =======================
fprintf(\'Plotting Data ...\n\')
data = load(\'ex1data1.txt\');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples

% Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y);

fprintf(\'Program paused. Press enter to continue.\n\');
pause;

这一步首先用load函数输入数据,接着要求我们实现画出原始数据的图像的函数

function plotData(x, y)
%PLOTDATA Plots the data points x and y into a new figure 
%   PLOTDATA(x,y) plots the data points and gives the figure axes labels of
%   population and profit.

figure; % open a new figure window
plot(x,y,\'rx\',\'MarkerSize\',10);
ylabel(\'Profit in $10,000s\'); % Set the y?axis label
xlabel(\'Population of City in 10,000s\'); % Set the x?axis label
end

2. 损失函数和梯度下降算法

原始图像画好后,就是linear regression的核心, 梯度下降算法

%% =================== Part 2: Cost and Gradient descent ===================

X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
theta = zeros(2, 1); % initialize fitting parameters

% Some gradient descent settings
iterations = 1500;
alpha = 0.01;

fprintf(\'\nTesting the cost function ...\n\')
% compute and display initial cost
J = computeCost(X, y, theta);
fprintf(\'With theta = [0 ; 0]\nCost computed = %f\n\', J);
fprintf(\'Expected cost value (approx) 32.07\n\');

% further testing of the cost function
J = computeCost(X, y, [-1 ; 2]);
fprintf(\'\nWith theta = [-1 ; 2]\nCost computed = %f\n\', J);
fprintf(\'Expected cost value (approx) 54.24\n\');

fprintf(\'Program paused. Press enter to continue.\n\');
pause;

fprintf(\'\nRunning Gradient Descent ...\n\')
% run gradient descent
theta = gradientDescent(X, y, theta, alpha, iterations);

% print theta to screen

fprintf(\'Theta found by gradient descent:\n\');
fprintf(\'%f\n\', theta);
fprintf(\'Expected theta values (approx)\n\');
fprintf(\' -3.6303\n 1.1664\n\n\');

% Plot the linear fit
hold on; % keep previous plot visible
plot(X(:,2), X*theta, \'-\')
legend(\'Training data\', \'Linear regression\')
hold off % don\'t overlay any more plots on this figure

% Predict values for population sizes of 35,000 and 70,000
predict1 = [1, 3.5] *theta;
fprintf(\'For population = 35,000, we predict a profit of %f\n\',...
predict1*10000);
predict2 = [1, 7] * theta;
fprintf(\'For population = 70,000, we predict a profit of %f\n\',...
predict2*10000);

fprintf(\'Program paused. Press enter to continue.\n\');
pause;

在这段代码中,首先是对输入X进行了处理,在前面加了一行1, 这样常量theta0相当于和这个1相乘,这个1也作为X的一个feature

第二步是检验了Loss function的正确性,也就是 computeCost函数

function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
%   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
%   parameter for linear regression to fit the data points in X and y

% Initialize some useful values
m = length(y); % number of training examples
J=0;
% You need to return the following variables correctly 
for i=1:m
    J=J+((X(i,:)*theta-y(i))^2)/(2*m);
end

end

第三步是使用梯度下降函数,来得到预测函数的参数theta,并得到在梯度下降过程中loss function的变化 J_history

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
%   theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by 
%   taking num_iters gradient steps with learning rate alpha

% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);

for iter = 1:num_iters

    % ====================== YOUR CODE HERE ======================
    % Instructions: Perform a single gradient step on the parameter vector
    %               theta. 
    %
    % Hint: While debugging, it can be useful to print out the values
    %       of the cost function (computeCost) and gradient here.
    %
    fprintf("The %d iteration\n",iter);
    temp0=theta(1)-alpha*sum(X*theta-y)/m;
    temp1=theta(2)-alpha*(X(:,2)\'*(X*theta-y))/m;
    theta(1)=temp0;
    theta(2)=temp1;
    % ============================================================
   
    % Save the cost J in every iteration    
    J_history(iter) = computeCost(X, y, theta);
    fprintf("The cost is %d\n",J_history(iter));
end

end

第四步是画出了预测值和正确数据的对比图,并检验了预测的效果,这里没有函数需要实现

 

3.画出损失函数和梯度下降的等高图

最后,我们画出损失函数和theta的关系图,并画出等高线,标记出最终得到的theta

%% ============= Part 3: Visualizing J(theta_0, theta_1) =============
fprintf(\'Visualizing J(theta_0, theta_1) ...\n\')

% Grid over which we will calculate J
theta0_vals = linspace(-10, 10, 100);
theta1_vals = linspace(-1, 4, 100);

% initialize J_vals to a matrix of 0\'s
J_vals = zeros(length(theta0_vals), length(theta1_vals));

% Fill out J_vals
for i = 1:length(theta0_vals)
    for j = 1:length(theta1_vals)
      t = [theta0_vals(i); theta1_vals(j)];
      J_vals(i,j) = computeCost(X, y, t);
    end
end


% Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals\';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel(\'\theta_0\'); ylabel(\'\theta_1\');

% Contour plot
figure;
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
xlabel(\'\theta_0\'); ylabel(\'\theta_1\');
hold on;
plot(theta(1), theta(2), \'rx\', \'MarkerSize\', 10, \'LineWidth\', 2);

 

这样就结束了,看起来很简单,主要是为我们搭好了框架,繁琐的画图过程也给我们省去了


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Matlab高级教程_第一篇:Matlab基础知识提炼_03发布时间:2022-07-18
下一篇:
Matlab高级教程_第一篇:Matlab基础知识提炼_04发布时间:2022-07-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap