freqz2
二维频率响应
语句
[H,f1,f2] = freqz2(h)
[H,f1,f2] = freqz2(h,[n1 n2])
[H,f1,f2] = freqz2(h,f1, f2)
[___] = freqz2(h,___,[dx dy])
freqz2(___)
说明
[H ,f1 ,f2 ] = freqz2(h ) 的返回值 H是h的64*64频率响应,f1和f2是长度为64的频率向量。 h 是一个二维的有限脉冲响应滤波器(FIR filter),其形式为计算单元(computational molecule)。
freqz2 所返回的 f1 和 f2 是在-1至1间标准化过的,1.0相当于采样频率的一半, 或π弧度。
[H ,f1 ,f2 ] = freqz2(h ,[n1 n2] ) 返回的 H 是 h的n2 *n1 频率响应, f1和f2长度分别为n1和n2。[n1 n2]可以被指定为两个分离的参量n1,n2。
[H ,f1 ,f2 ] = freqz2(h ,f1, f2 ) 返回有限脉冲响应滤波器 h 在频率值在f1间f2的频率响应。f1 f2必须在-1.0到1.0范围内,1.0相当于采样频率的一半, 或π弧度。[f1 f2]可以被指定为两个分离的参量f1,f2。
[___] = freqz2(h,___,[dx dy] ) 使用[dx dy]覆盖h中的样本间距。还可以指定一个标量来指定x和y维度中的间距。
freqz2(___) 在没有指定输出参数时,生成二维幅度频率响应的网格图。
示例
观察滤波器的频率响应
本示例展示了如何使用fwind1创建二维滤波器和如何使用freqz2观察该滤波器的频率响应
创建理想频率响应
Hd = zeros(16,16);
Hd(5:12,5:12) = 1;
Hd(7:10,7:10) = 0;
创建一维窗口。本示例使用长度为16的巴特兰窗口。
w = [0:2:16 16:-2:0]/16;
使用fwind1 创建16*16滤波器和一维窗口。此滤波器最接近理想频率响应。
h = fwind1(Hd,w);
显示滤波器的实际频率响应。
colormap(parula(64))
freqz2(h,[32 32]);
axis ([-1 1 -1 1 0 1])
注:除h数据类型为single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64外,其他都是double
=====================原文========================
原文地址 https://ww2.mathworks.cn/help/images/ref/freqz2.html
freqz2
2-D frequency response
Syntax
[H,f1,f2] = freqz2(h)
[H,f1,f2] = freqz2(h,[n1 n2])
[H,f1,f2] = freqz2(h,f1, f2)
[___] = freqz2(h,___,[dx dy])
freqz2(___)
Description
[H ,f1 ,f2 ] = freqz2(h ) returns H , the 64 -by-64 frequency response of h , and the frequency vectors f1 (of length 64 ) and f2 (of length 64 ). h is a two-dimensional FIR filter, in the form of a computational molecule.
freqz2 returns f1 and f2 as normalized frequencies in the range -1.0 to 1.0, where 1.0 corresponds to half the sampling frequency, or π radians.
[H ,f1 ,f2 ] = freqz2(h ,[n1 n2] ) returns H , the n2 -by-n1 frequency response of h , and the frequency vectors f1 (of length n1 ) and f2 (of length n2 ). You can also specify[n1 n2] as two separate arguments, n1,n2 .
[H ,f1 ,f2 ] = freqz2(h ,f1, f2 ) returns the frequency response for the FIR filter h at frequency values in f1 and f2 . These frequency values must be in the range -1.0 to 1.0, where 1.0 corresponds to half the sampling frequency, or π radians. You can also specify [f1 f2] as two separate arguments, f1, f2 .
[___] = freqz2(h,___,[dx dy] ) uses [dx dy] to override the intersample spacing in h . You can also specify a scalar to specify the same spacing in both the x and ydimensions.
freqz2(___) produces a mesh plot of the two-dimensional magnitude frequency response when no output arguments are specified.
Examples
View Frequency Response of Filter
This example shows how to create a two-dimensional filter using fwind1 and how to view the filter's frequency response using freqz2 .
Create an ideal frequency response.
Hd = zeros(16,16);
Hd(5:12,5:12) = 1;
Hd(7:10,7:10) = 0;
Create a 1-D window. This example uses a Bartlett window of length 16.
w = [0:2:16 16:-2:0]/16;
Create the 16-by-16 filter using fwind1 and the 1-D window. This filter gives the closest match to the ideal frequency response.
h = fwind1(Hd,w);
Display the actual frequency response of the filter.
colormap(parula(64))
freqz2(h,[32 32]);
axis ([-1 1 -1 1 0 1])
|
请发表评论