• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Go并发编程--正确使用goroutine

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

 

1. 对创建的gorouting负载

1.1 不要创建一个你不知道何时退出的 goroutine

下面的代码有什么问题? 是不是在我们的程序种经常写类似的代码?

 
// Week03/blog/01/01.go
package main
 
import (
"log"
"net/http"
_ "net/http/pprof"
)
 
// 初始化函数
func setup() {
// 这里面有一些初始化的操作
}
 
// 入口函数
func main() {
setup()
 
// 主服务
server()
 
// for debug
pprof()
 
select {}
}
 
// http api server
func server() {
go func() {
mux := http.NewServeMux()
mux.HandleFunc("/ping", func(w http.ResponseWriter, r *http.Request) {
w.Write([]byte("pong"))
})
 
// 主服务
if err := http.ListenAndServe(":8080", mux); err != nil {
log.Panicf("http server err: %+v", err)
return
}
}()
}
 
// 辅助服务,用来debug性能测试
func pprof() {
// 辅助服务,监听了其他端口,这里是 pprof 服务,用于 debug
go http.ListenAndServe(":8081", nil)
}

以上代码有几个问题,是否想到过?

  1. 如果server 是在其他的包里面, 如果没有特殊的说明, 调用者是否知道这是一个异步调用?
  2. main 函数种,最后使用select {} 使整个程序处于阻塞状态,也就是空转, 会不会存在浪费?
  3. 如果线上出现事故,debug服务已经突出,你想要debug这时是否很茫然?
  4. 如果某一天服务突然重启, 你却找不到事故日志, 是否能想到起的这个8801端口的服务呢?

1.2 不要帮别人做选择

把是否 并发 的选择权交给你的调用者,而不是自己就直接悄悄的用上了 goroutine

下面做如下改变,将两个函数是否并发操作的选择权留给main函数


package main
 
import (
"log"
"net/http"
_ "net/http/pprof"
)
 
func setup(){
// 初始化操作
}
 
 
func main(){
 
setup()
 
// for debug
go pprof()
 
// 主服务,http api
go server()
 
select{}
}
 
 
func server(){
 
mux := http.NewServerMux()
mux.HandleFunc("ping", func(w http.ResponseWriter, r * http.Request){
w.Write([]byte("pong"))
}
 
// 主服务
if err := http.ListerAndServer(":8080",mux); err != nil{
log.panic("http server launch error: %v", err)
return
}
 
}
 
func pprof(){
// 辅助服务 监听其他端口,这里是pprof服务,拥有debug
http.ListerAndServer(":8081",nil)
}

1.3 不要作为一个旁观者

一般情况下,不要让 主进程称为一个无所事事的旁观者, 明明可以干活,但是最后使用一个select在那儿空跑,而且这种看着也怪,在没有特殊场景下尽量不要使用这种阻塞的方式


package main
 
import (
"log"
"net/http"
_ "net/http/pprof"
)
 
func setup() {
// 这里面有一些初始化的操作
}
 
func main() {
setup()
 
// for debug
go pprof()
 
// 主服务, http本来就是一个阻塞的服务
server()
}
 
func server() {
mux := http.NewServeMux()
mux.HandleFunc("/ping", func(w http.ResponseWriter, r *http.Request) {
w.Write([]byte("pong"))
})
 
// 主服务
if err := http.ListenAndServe(":8080", mux); err != nil {
log.Panicf("http server err: %+v", err)
return
}
}
 
func pprof() {
// 辅助服务,监听了其他端口,这里是 pprof 服务,用于 debug
http.ListenAndServe(":8081", nil)
}

1.4 不要创建不知道什么时候退出的 goroutine

很多时候我们在创建一个 协程(goroutine)后就放任不管了,如果程序永远运行下去,可能不会有什么问题,但实际情况并非如此, 我们的产品需要迭代,需要修复bug,需要不停进行构建,发布, 所以当程序退出后(主程序),运行的某些子程序并不会完全退出,比如这个 pprof, 他自身本来就是一个后台服务,但是当 main退出后,实际 pprof这个服务并不会退出,这样 pprof就会称为一个孤魂野鬼,称为一个 zombie, 导致goroutine泄漏。

所以再一次对程序进行修改, 保证 goroutine能正常退出


package main
 
import (
"context"
"fmt"
"log"
"net/http"
_ "net/http/pprof"
"time"
)
 
func setup() {
// 这里面有一些初始化的操作
}
 
func main() {
setup()
 
// 用于监听服务退出, 这里使用了两个 goroutine,所以 cap 为2
done := make(chan error, 2)
 
// 无缓冲的通道,用于控制服务退出,传入同一个 stop,做到只要有一个服务退出了那么另外一个服务也会随之退出
stop := make(chan struct{}, 0)
 
// for debug
go func() {
// pprof 传递一个 channel
fmt.Println("pprof start...")
done <- pprof(stop)
fmt.Printf("err1:%v\n", done)
 
}()
 
// 主服务
go func() {
fmt.Println("app start...")
done <- app(stop)
fmt.Printf("err2:%v\n", done)
}()
 
// stopped 用于判断当前 stop 的状态
var stopped bool
 
// 这里循环读取 done 这个 channel
// 只要有一个退出了,我们就关闭 stop channel
for i := 0; i < cap(done); i++ {
 
// 对于有缓冲的chan, chan中无值会一直处于阻塞状态
// 对于app 服务会一直阻塞状态,不会有 数据写入到done 通道,只有在5s后,模拟的 pprof会有err写入chan,此时才会触发以下逻辑
if err := <-done; err != nil {
log.Printf("server exit err: %+v", err)
}
 
if !stopped {
stopped = true
// 通过关闭 无缓冲的channel 来通知所有的 读 stop相关的goroutine退出
close(stop)
}
}
}
 
// http 服务
func app(stop <-chan struct{}) error {
mux := http.NewServeMux()
mux.HandleFunc("/ping", func(w http.ResponseWriter, r *http.Request) {
w.Write([]byte("pong"))
})
 
return server(mux, ":8080", stop)
}
 
func pprof(stop <-chan struct{}) error {
// 注意这里主要是为了模拟服务意外退出,用于验证一个服务退出,其他服务同时退出的场景
// 因为这里没有返回err, 所以done chan中无法接收到值, 主程序中会一直阻塞住
go func() {
server(http.DefaultServeMux, ":8081", stop)
}()
 
time.Sleep(5 * time.Second)
// 模拟出错
return fmt.Errorf("mock pprof exit")
}
 
// 启动一个服务
func server(handler http.Handler, addr string, stop <-chan struct{}) error {
 
s := http.Server{
Handler: handler,
Addr: addr,
}
 
// 这个 goroutine 控制退出,因为 stop channel 只要close或者是写入数据,这里就会退出
go func() {
// 无缓冲channel等待,写入或者关闭
<-stop
log.Printf("server will exiting, addr: %s", addr)
// 此时 httpApi 服务就会优雅的退出
s.Shutdown(context.Background())
}()
 
// 没有触发异常的话,会一直处于阻塞
return s.ListenAndServe()
}

查看以下运行结果

D:\gopath\controlGoExit>go run demo.go
app start...
pprof start...
err1:0xc00004c720
2021/09/12 22:48:37 server exit err: mock pprof exit
2021/09/12 22:48:37 server will exiting, addr: :8080
2021/09/12 22:48:37 server will exiting, addr: :8081
err2:0xc00004c720
2021/09/12 22:48:37 server exit err: http: Server closed

虽然我们已经经过了三轮优化,但是这里还是有一些需要注意的地方:

  1. 虽然我们调用了 Shutdown 方法,但是我们其实并没有实现优雅退出
  2. 在 server 方法中我们并没有处理 panic的逻辑,这里需要处理么?如果需要那该如何处理呢?

1.5 不要创建都无法退出的 goroutine

永远无法退出的 goroutine, 即 goroutine 泄漏

下面是一个例子,可能在不知不觉中会用到


package main
 
 
import (
"log"
_ "net/http/pprof"
"net/http"
 
)
 
func setup() {
// 这里面有一些初始化的操作
log.Print("服务启动初始化...")
}
 
func main() {
setup()
 
// for debug
go pprof()
 
// 主服务, http本来就是一个阻塞的服务
server()
}
 
func server() {
mux := http.NewServeMux()
mux.HandleFunc("/ping", func(w http.ResponseWriter, r *http.Request) {
w.Write([]byte("pong"))
})
 
mux.HandleFunc("/leak", LeakHandle)
 
// 主服务
if err := http.ListenAndServe(":8080", mux); err != nil {
log.Panicf("http server err: %+v", err)
return
}
}
 
func pprof() {
// 辅助服务,监听了其他端口,这里是 pprof 服务,用于 debug
http.ListenAndServe(":8081", nil)
}
 
func LeakHandle(w http.ResponseWriter, r *http.Request) {
ch := make(chan bool, 0)
go func() {
fmt.Println("异步任务做一些操作")
<-ch
}()
 
w.Write([]byte("will leak"))
}

复用一下上面的 server 代码,我们经常会写出这种类似的代码

  • http 请求来了,我们启动一个 goroutine 去做一些耗时一点的工作
  • 然后返回了
  • 然后之前创建的那个 goroutine 阻塞了(对于一个无缓冲的chan,如果没有接收或关闭操作会永远阻塞下去)
  • 然后就泄漏了

绝大部分的 goroutine 泄漏都是因为 goroutine 当中因为各种原因阻塞了,我们在外面也没有控制它退出的方式,所以就泄漏了

接下来我们验证一下是不是真的泄漏了

服务启动之后,访问debug访问网址,http://localhost:8081/debug/pprof/goroutine?debug=1.
当请求两次 http://127.0.0.1/leak后查看 goroutine数量,如图

继续请求三次后,如图

1.6 确保创建出的goroutine工作已经完成

这个其实就是优雅退出的问题,程序中可能启动了很多的 goroutine 去处理一些问题,但是服务退出的时候我们并没有考虑到就直接退出了。例如退出前日志没有 flush 到磁盘,我们的请求还没完全关闭,异步 worker 中还有 job 在执行等等。

看一个例子,假设现在有一个埋点服务,每次请求我们都会上报一些信息到埋点服务上

// Reporter 埋点服务上报
type Reporter struct {
}
 
var reporter Reporter
 
// 模拟耗时
func (r Reporter) report(data string) {
time.Sleep(time.Second)
fmt.Printf("report: %s\n", data)
}
 
mux.HandleFunc("/ping", func(w http.ResponseWriter, r *http.Request) {
// 在请求中异步调用
// 这里并没有满足一致性
go reporter.report("ping pong")
fmt.Println("ping")
w.Write([]byte("pong"))
})

在发送一次请后之后就直接退出了, 异步上报的逻辑是没有执行的

$ go tun demo.go
ping
^C signal:interrupt

有两种改法:

  • 一种是给 reporter 加上 shutdown 方法,类似 http 的 shutdown,等待所有的异步上报完成之后,再退出
  • 另外一种是我们直接使用 一些 worker 来执行,在当然这个 worker 也要实现类似 shutdown 的方法。

一般推荐后一种,因为这样可以避免请求量比较大时,创建大量 goroutine,当然如果请求量比较小,不会很大,用第一种也是可以的。

第二种方法代码如下:


<
// 埋点上报
package main
 
import (
"context"
"fmt"
"log"
"net/http"
"sync"
)
 
// Reporter 埋点服务上报
type Reporter struct {
worker int
messages chan string
wg sync.WaitGroup
closed chan struct{}
once sync.Once
}
 
// NewReporter NewReporter
func NewReporter(worker, buffer int) *Reporter {
return &Reporter{
worker: worker,
messages: make(chan string, buffer),
closed: make(chan struct{}),
}
}
 
// 执行上报
func (r *Reporter) Run(stop <-chan struct{}) {
// 用于执行错误
go func() {
// 没有错误时
<-stop
fmt.Println("stop...")
r.shutdown()
}()
 
for i := 0; i < r.worker; i++ {
r.wg.Add(1)
 
go func() {
defer r.wg.Done()
for {
select {
case <-r.closed:
return
case msg := <-r.messages:
fmt.Printf("report: %s\n", msg)
}
}
}()
}
 
r.wg.Wait()
fmt.Println("report workers exit...")
}
 
// 这里不必关闭 messages
// 因为 closed 关闭之后,发送端会直接丢弃数据不再发送
// Run 方法中的消费者也会退出
// Run 方法会随之退出
func (r *Reporter) shutdown() {
r.once.Do(func() { close(r.closed) })
}
 
// 模拟耗时
func (r *Reporter) Report(data string) {
// 这个是为了及早退出
// 并且为了避免我们消费者能力很强,发送者这边一直不阻塞,可能还会一直写数据
select {
case <-r.closed:
fmt.Printf("reporter is closed, data will be discarded: %s \n", data)
default:
}
 
select {
case <-r.closed:
fmt.Printf("reporter is closed, data will be discarded: %s \n", data)
case r.messages <- data:
}
}
 
func setup3() {
// 初始化一些操作
fmt.Println("程序启动...")
}
 
func main() {
setup3()
 
// 用于监听服务完成时退出
done := make(chan error, 3)
 
// 实例化一个 reporter
reporter := NewReporter(2, 100)
 
// 用于控制服务退出,传入同一个 stop,做到只要有一个服务退出了那么另外一个服务也会随之退出
stop := make(chan struct{}, 0)
 
// for debug
go func() {
done <- pprof3(stop)
}()
 
// http主服务
go func() {
done <- app3(reporter, stop)
}()
 
// 上报服务,接收一个监控停止的 chan
go func() {
reporter.Run(stop)
done <- nil
}()
 
// 这里循环读取 done 这个 channel

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Go版本依赖--伪版本发布时间:2022-07-10
下一篇:
Go字符串函数发布时间:2022-07-10
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap