在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
开源软件名称:aws-deepracer-community/deepracer-analysis开源软件地址:https://github.com/aws-deepracer-community/deepracer-analysis开源编程语言:Jupyter Notebook 98.8%开源软件介绍:deepracer-analysisThis is a set of notebooks and utilities to enable analysis of logs for AWS DeepRacer. This project is a redo of analysis solutions provided in the AWS DeepRacer Workshops repository. There are a few motivations leading a decision to reorganise the repository
Separate repository makes it easier to find it. Jupyter combined with Jupytext enables maintaining the notebook as a set of Python files from which a notebook can then be genereted. Finally, the project files have been moved to DeepRacer utils. Required setupIt is assumed that you have aws-cli installed and configured in your account. You will find instructions in documentation. Without this the notebooks will not fail to load but fetching logs from AWS will not work. If you realise this after running the notebook, you can open a terminal withing Jupyter Lab and perform the configuration. If this happens in Docker, just bear in mind that ~/.aws folder will be created for you with root privileges - this may lead to permissions problems at some point. Using the notebooks with DockerThe recommended way to work with this project is by using Docker containers. Containers provide an isolated, disposable environment for your use. If you however prefer not to use Docker (or are using Windows), see "Using the notebooks without Docker" below. Since you're using DeepRacer Analysis, chances are you've already got Docker installed. If not, find instructions in Docker documentation. Docker setup comes with Jupytext configured. Building the Docker imageBefore you run your notebooks, you will have to build the docker image:
I'd recommend that you do it every time when you pull changes from the git repository. This builds a Docker image on top of a jupyter-minimal image and installs required dependencies. Starting the analysisTo start using the analysis you have to first start the container and then open the notebook
in a browser. The startup script starts Jupyter Notebook but is you add
If you're running on a remote system, you can use
will return
if the container is running. Using the notebooks without DockerThe notebooks require Jupyter to run, together with deepracer-utils. While not needed for using the notebooks, it's worth to also have Jupytext installed. If you only plan to use the notebooks, I recommend that you make a copy of them to enable seamless pulls of any updates. If you pull latest changes for the notebooks, do also run
in your venv. This way you will also get upgrades on the requirements. Running
Modifying the notebooksIf you want to use the notebooks as a user and don't intend to submit changes, simply use them through Jupyter Notebook or Jupyter Lab. If you would like to submit changes to a notebook however, follow instruction in the Jupytext README to enable pairing of the notebook with a light script. This means that any changes you apply to the notebook or the .py file paired with it will be synched. When applying changes to the notebook, make sure you can use them with the sample log resources and at the end of work restart the Kernel and run all the cells to provide a clean view in the notebook. Roadmap
CreditsWe would like to thank:
LicenseThis project retains the license of the aws-deepracer-workshops project which has been forked for the initial Community contributions. Our understanding is that it is a license more permissive than the MIT license and allows for removing of the copyright headers. Unless clearly sated otherwise, this license applies to all files in this repository. TroubleshootingIf you face problems, do reach out to the AWS DeepRacer Community.
Channel #dr-training-log-analysis has been created for this purpose.
When you face an issue, it is worth running ContactYou can contact Tomasz Ptak through the Community Slack: http://join.deepracing.io. |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论