开源软件名称: okwrtdsh/anaconda3开源软件地址: https://github.com/okwrtdsh/anaconda3开源编程语言:
Dockerfile
100.0%
开源软件介绍:
anaconda3
Anaconda3, Jupyter Notebook, OpenCV3, TensorFlow and Keras2 for Deep Learning
Available tags
Anaconda3, Jupyter, OpenCV3
Tag
Size / Layers
CUDA Toolkit (Linux x86_64 / Windows x86_64)
CUDNN
latest
, cpu
-
-
10.0-cudnn7
CUDA 10.0 ( >= 410.48 / 411.31 )
7
9.2-cudnn7
CUDA 9.2 ( >= 396.26 / 397.44 )
7
9.1-cudnn7
CUDA 9.1 ( >= 387.26 / 388.19 )
7
9.0-cudnn7
CUDA 9.0 ( >= 384.81 / 385.54 )
7
8.0-cudnn6
CUDA 8.0 ( >= 375.26 / 376.51 )
6
Tensorflow
Tag
Size / Layers
Base
Tensorflow
tf-cpu
, tf
cpu
1.12.0
tf-10.0-cudnn7
10.0-cudnn7
1.12.0
tf-9.2-cudnn7
9.2-cudnn7
1.12.0
tf-9.1-cudnn7
9.1-cudnn7
1.7.0
tf-9.0-cudnn7
9.0-cudnn7
1.7.0
tf-8.0-cudnn6
8.0-cudnn6
1.4.1
Keras (Tensorflow Backend)
Tag
Size / Layers
Base
Tensorflow
Keras
keras-cpu
, keras
tf-cpu
1.12.0
2.2.4
keras-10.0-cudnn7
tf-10.0-cudnn7
1.12.0
2.2.4
keras-9.2-cudnn7
tf-9.2-cudnn7
1.12.0
2.2.4
keras-9.1-cudnn7
tf-9.1-cudnn7
1.7.0
2.1.5
keras-9.0-cudnn7
tf-9.0-cudnn7
1.7.0
2.1.5
keras-8.0-cudnn6
tf-8.0-cudnn6
1.4.1
2.1.3
Pytorch
Tag
Size / Layers
Base
Pytorch
pytorch-cpu
, pytorch
cpu
1.0.0
pytorch-10.0-cudnn7
10.0-cudnn7
1.0.0
pytorch-9.2-cudnn7
9.2-cudnn7
1.0.0
pytorch-9.1-cudnn7
9.1-cudnn7
1.0.0
pytorch-9.0-cudnn7
9.0-cudnn7
1.0.0
pytorch-8.0-cudnn6
8.0-cudnn6
1.0.0
Mxnet
Tag
Size / Layers
Base
Mxnet
mxnet-cpu
, mxnet
cpu
mxnet
mxnet-10.0-cudnn7
10.0-cudnn7
mxnet-cu100
mxnet-9.2-cudnn7
9.2-cudnn7
mxnet-cu92
mxnet-9.1-cudnn7
9.1-cudnn7
mxnet-cu91
mxnet-9.0-cudnn7
9.0-cudnn7
mxnet-cu90
mxnet-8.0-cudnn6
8.0-cudnn6
mxnet-cu80
How to Use
CPU
Run with docker (image: okwrtdsh/anaconda3:keras-cpu
)
$ docker run -v $( pwd) :/src/notebooks -p 8888:8888 -td okwrtdsh/anaconda3:keras-cpu
Open http://localhost:8888
in web browser
GPU
Run with nvidia-docker (image: okwrtdsh/anaconda3:keras-10.0-cudnn7
)
$ nvidia-docker run -v $( pwd) :/src/notebooks -p 8888:8888 -td okwrtdsh/anaconda3:keras-10.0-cudnn7
Open http://localhost:8888
in web browser
CPU (docker-compose)
docker-compose.yml (image: okwrtdsh/anaconda3:keras-cpu
)
version : ' 3'
services :
jupyter :
image : okwrtdsh/anaconda3:keras-cpu
ports :
- ' 8888:8888'
volumes :
- ./notebooks:/src/notebooks
Run with docker-compose
Open http://localhost:8888
in web browser
GPU (docker-compose)
docker-compose.yml (image: okwrtdsh/anaconda3:keras-10.0-cudnn7
)
version : ' 3'
services :
jupyter :
image : okwrtdsh/anaconda3:keras-10.0-cudnn7
ports :
- ' 8888:8888'
volumes :
- ./notebooks:/src/notebooks
Run with nvidia-docker
# Run with nvidia-docker-compose (nvidia-docker v1)
$ nvidia-docker-compose up -d
# Run with docker-compose (nvidia-docker v2)
$ docker-compose up -d
Open http://localhost:8888
in web browser
Please note that PyTorch uses shared memory to share data between processes, so if torch multiprocessing is used (e.g. for multithreaded data loaders) the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host
or --shm-size
command line options to nvidia-docker run.
nvidia-docker
$ nvidia-docker run --ipc=host -v $( pwd) :/src/notebooks -p 8888:8888 -td okwrtdsh/anaconda3:pytorch-10.0-cudnn7
docker-compose
version : ' 3'
services :
jupyter :
image : okwrtdsh/anaconda3:pytorch-10.0-cudnn7
ipc : host
ports :
- ' 8888:8888'
volumes :
- ./notebooks:/src/notebooks
# Run with nvidia-docker-compose (nvidia-docker v1)
$ nvidia-docker-compose up -d
# Run with docker-compose (nvidia-docker v2)
$ docker-compose up -d
请发表评论