• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

pavelkomarov/exportify: Export Spotify playlists using the Web API. Analyze them ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称:

pavelkomarov/exportify

开源软件地址:

https://github.com/pavelkomarov/exportify

开源编程语言:

Jupyter Notebook 98.1%

开源软件介绍:

Build Status Binder

Export your Spotify playlists for analysis or just safekeeping: exportify.net

This is a hard fork of the original Exportify repo. I've simplified and updated the code, instituted rate limiting so exporting large or all playlists actually works, gotten rid of the outdated tests, set up automatic deployment to github pages, fixed a parsing bug, enhanced the set of features, added logout functionality, and provided an ipython notebook to do something interesting with the data.

Export Format

Track data is exported in CSV format with the following fields:

  • Spotify ID
  • Artist IDs
  • Track Name
  • Album Name
  • Artist Name(s)
  • Release Date
  • Duration (ms)
  • Popularity
  • Added By
  • Added At
  • Genres
  • Danceability
  • Energy
  • Key
  • Loudness
  • Mode
  • Speechiness
  • Acousticness
  • Instrumentalness
  • Liveness
  • Valence
  • Tempo
  • Time Signature

Analysis

Run the Jupyter Notebook or launch it in Binder to get a variety of plots about the music in a playlist including:

  • Most common artists
  • Most common genres
  • Release date distribution
  • Popularity distribution
  • Comparisons of Acousticness, Valence, etc. to normal
  • Time signatures and keys
  • All songs plotted in 2D to indicate relative similarities

Development

Developers wishing to make changes to Exportify should use a local web server. For example, using Python (in the Exportify repo dir):

python -m http.server

Then open http://localhost:8000.

Contributing

  1. Fork it
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -m "message")
  4. Push to the branch (git push origin my-new-feature)
  5. Create a new Pull Request



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap