• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

buds-lab/temporal-features-for-nonres-buildings-library: Jupyter notebooks for t ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称:

buds-lab/temporal-features-for-nonres-buildings-library

开源软件地址:

https://github.com/buds-lab/temporal-features-for-nonres-buildings-library

开源编程语言:

Jupyter Notebook 100.0%

开源软件介绍:

Applying temporal data mining to the Building Data Genome

This repository is a collection of temporal feature mining techniques implemented in the following publications:

Miller, C., & Meggers, F. (2017). Mining electrical meter data to predict principal building use, performance class, and operations strategy for hundreds of non-residential buildings. Energy and Buildings, 156(Supplement C), 360–373. https://doi.org/10.1016/j.enbuild.2017.09.056

Miller, Clayton. "What's in the box?! Towards explainable machine learning applied to non-residential building smart meter classification." Energy and Buildings 199 (2019): 523-536.

These notebooks use the Building Data Genome Project data set:

Miller, C., & Meggers, F. (2017). The Building Data Genome Project: An open, public data set from non-residential building electrical meters. Energy Procedia, 122, 439–444. https://doi.org/10.1016/j.egypro.2017.07.400

Using the notebooks

We recommend you download the Anaconda Python Distribution and use Jupyter to get an understanding of the data.

  • Raw temporal and meta data are found in /data/raw/ in the Building Data Genome project and can be copied and pasted into the data folder in this project to begin

This project is based upon work completed part of Clayton Miller's Ph.D. dissertation: Miller, C., 2017. Screening Meter Data: Characterization of Temporal Energy Data from Large Groups of Non-Residential Buildings. ETH Zurich, Zurich, Switzerland.




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
wawachief/fp-notebooks: Notebooks jupyter发布时间:2022-07-09
下一篇:
kennytheanalystt/netflix_analysis: jupyter notebook发布时间:2022-07-09
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap