在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
开源软件名称:JuliaGaussianProcesses/KernelFunctions.jl开源软件地址:https://github.com/JuliaGaussianProcesses/KernelFunctions.jl开源编程语言:Julia 99.8%开源软件介绍:KernelFunctions.jlKernel functions for machine learningKernelFunctions.jl is a general purpose kernel package. It provides a flexible framework for creating kernel functions and manipulating them, and an extensive collection of implementations. The main goals of this package are:
Examplesx = range(-3.0, 3.0; length=100)
# A simple standardised squared-exponential / exponentiated-quadratic kernel.
k₁ = SqExponentialKernel()
K₁ = kernelmatrix(k₁, x)
# Set a function transformation on the data
k₂ = Matern32Kernel() ∘ FunctionTransform(sin)
K₂ = kernelmatrix(k₂, x)
# Set a matrix premultiplication on the data
k₃ = PolynomialKernel(; c=2.0, degree=2) ∘ LinearTransform(randn(4, 1))
K₃ = kernelmatrix(k₃, x)
# Add and sum kernels
k₄ = 0.5 * SqExponentialKernel() * LinearKernel(; c=0.5) + 0.4 * k₂
K₄ = kernelmatrix(k₄, x)
plot(
heatmap.([K₁, K₂, K₃, K₄]; yflip=true, colorbar=false)...;
layout=(2, 2), title=["K₁" "K₂" "K₃" "K₄"],
) Related WorkThis package replaces the now-defunct MLKernels.jl. It incorporates lots of excellent existing work from packages such as GaussianProcesses.jl, and is used in downstream packages such as AbstractGPs.jl, ApproximateGPs.jl, Stheno.jl, and AugmentedGaussianProcesses.jl. See the JuliaGaussianProcesses Github organisation and website for more information. Issues/ContributingIf you notice a problem or would like to contribute by adding more kernel functions or features please submit an issue, or open a PR (please see the ColPrac contribution guidelines). |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论