• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

JuliaGeometry/Quaternions.jl: A Julia module with quaternion and dual-quaternion ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称:

JuliaGeometry/Quaternions.jl

开源软件地址:

https://github.com/JuliaGeometry/Quaternions.jl

开源编程语言:

Julia 100.0%

开源软件介绍:

Quaternions.jl

A Julia module with quaternion, octonion and dual-quaternion functionality

Stable Dev Build Status codecov

Quaternions are best known for their suitability as representations of 3D rotational orientation. They can also be viewed as an extension of complex numbers.

Implemented functions are:

+-*/^
real
imag_part  (tuple)
conj
abs
abs2
normalize
normalizea  (return normalized quaternion and absolute value as a pair)
angleaxis  (taken as an orientation, return the angle and axis (3 vector) as a tuple)
angle
axis
sqrt
exp
exp2
exp10
expm1
log2
log10
log1p
cis
cispi
sin
cos
tan
asin
acos
atan
sinh
cosh
tanh
asinh
acosh
atanh
csc
sec
cot
acsc
asec
acot
csch
sech
coth
acsch
asech
acoth
sinpi
cospi
sincos
sincospi
slerp
rand
randn

Dual quaternions are an extension, combining quaternions with dual numbers. On top of just orientation, they can represent all rigid transformations.

There are two conjugation concepts here

conj  (quaternion conjugation)
dconj (dual conjugation)

further implemented here:

Q0  (the 'real' quaternion)
Qe  ( the 'dual' part)
+-*/^
abs
abs2
normalize
normalizea
angleaxis
angle
axis
exp
log
sqrt
rand

Octonions form the logical next step on the Complex-Quaternion path. They play a role, for instance, in the mathematical foundation of String theory.

+-*/^
real
imag_part  (tuple)
conj
abs
abs2
exp
log
normalize
normalizea  (return normalized octonion and absolute value as a tuple)
exp
log
sqrt
rand
randn



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap