• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

wkearn/Kalman.jl: Generic interface for Kalman filters in Julia

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称:

wkearn/Kalman.jl

开源软件地址:

https://github.com/wkearn/Kalman.jl

开源编程语言:

Julia 90.3%

开源软件介绍:

Kalman

Build Status Coverage Status

A generic interface for Kalman filters in Julia.

Note that the TimeModels.jl also has an implementation of Kalman filters for time series analysis. This implementation (Kalman.jl) focuses on applications of Kalman filters to online data assimilation problems, and intends to develop a single API for both linear and nonlinear Kalman filters. Kalman.jl is an unregistered package still in active development, so bugs may be common and changes rapid. For a more stable and tested API, check out TimeModels.jl.

Installation

	Pkg.clone("git://github.com/wkearn/Kalman.jl")

Until this package is registered, simply Pkg.clone from this repository

Usage

using Kalman

x0 = State([0.0],[1.0]')
f = LinearModel([1]',[1]',[1e-10]')
z = LinearObservationModel([1]',[0.01]')

kf0 = BasicKalmanFilter(x0,f,z)
kf = kf0

y = map(i->Observation([i]),-0.37727+sqrt(0.01)*randn(50))

Note that in Julia v0.4 and greater, you can replace the Observation{T} with a Nullable{Vector{T}} which allows you to represent missing measurements.

x = zeros(Float64,50)
p = ones(Float64,50)

for i = 1:49
	kf = predictupdate(kf,y[i])
	x[i+1] = kf.x.x[1]
	p[i+1] = kf.x.p[1]
end

Estimation of a scalar constant)

Roadmap

Filters which have been implemented list the Kalman.jl type which implements them.

Kalman Filter

  • Linear, time-invariant filter with regular updating: BasicKalmanFilter
    • Missing measurements supported with Nullable{Vector{T}} observations

Extended Kalman Filter

  • Nonlinear, time-invariant filter with regular updating: BasicExtendedKalmanFilter

Unscented Kalman Filter

Ensemble Kalman Filter




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap