• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

wildart/ManifoldLearning.jl: A Julia package for manifold learning and nonlinear ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称:

wildart/ManifoldLearning.jl

开源软件地址:

https://github.com/wildart/ManifoldLearning.jl

开源编程语言:

Julia 100.0%

开源软件介绍:

ManifoldLearning

A Julia package for manifold learning and nonlinear dimensionality reduction.

Documentation Build Status

Methods

  • Isomap
  • Diffusion maps
  • Locally Linear Embedding (LLE)
  • Hessian Eigenmaps (HLLE)
  • Laplacian Eigenmaps (LEM)
  • Local tangent space alignment (LTSA)
  • t-Distributed Stochastic Neighborhood Embedding (t-SNE)

Installation

The package can be installed with the Julia package manager. From the Julia REPL, type ] to enter the Pkg REPL mode and run:

pkg> add ManifoldLearning

Examples

A simple example of using the Isomap reduction method.

julia> X, _ = ManifoldLearning.swiss_roll();

julia> X
3×1000 Array{Float64,2}:
  -3.19512  3.51939   -0.0390153-9.46166   3.44159
  29.1222   9.99283    2.25296       25.1417   28.8007
 -10.1861   6.59074  -11.037         -1.04484  13.4034

julia> M = fit(Isomap, X)
Isomap(outdim = 2, neighbors = 12)

julia> Y = transform(M)
2×1000 Array{Float64,2}:
 11.0033  -13.069   16.7116-3.26095   25.7771
 18.4133   -6.2693  10.6698     20.0646   -24.8973

Performance

Most of the methods use k-nearest neighbors method for constructing local subspace representation. By default, neighbors are computed from a distance matrix of a dataset. This is not an efficient method, especially, for large datasets.

Consider using a custom k-nearest neighbors function, e.g. from NearestNeighbors.jl or FLANN.jl.

See example of custom knn function here.




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap