• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

EtymoIO/EvolvingGraphs.jl: Working with time-dependent networks in Julia

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称:

EtymoIO/EvolvingGraphs.jl

开源软件地址:

https://github.com/EtymoIO/EvolvingGraphs.jl

开源编程语言:

Julia 100.0%

开源软件介绍:

EvolvingGraphs

Build Status codecov.io

Working with time-dependent networks in Julia

  • Installation:
Pkg.add("EvolvingGraphs")

Get Started

We model a time-dependent network, a.k.a an evolving graph, as a ordered sequence of static graphs such that each static graph represents the interaction between nodes at a specific time stamp. The figure below shows an evolving graph with 3 timestamps.

simple evolving graph

Using EvolvingGraphs, we could simply construct this graph by using the function add_bunch_of_edges!, which adds a list of edges all together.

julia> using EvolvingGraphs

julia> g = EvolvingGraph()
Directed EvolvingGraph 0 nodes, 0 static edges, 0 timestamps

julia> add_bunch_of_edges!(g, [(1,2,1),(1,3,2),(2,3,3)])
Directed EvolvingGraph 3 nodes, 3 static edges, 3 timestamps

julia> edges(g)
3-element Array{EvolvingGraphs.WeightedTimeEdge{EvolvingGraphs.Node{Int64},Int64,Float64},1}:
 Node(1)-1.0->Node(2) at time 1
 Node(1)-1.0->Node(3) at time 2
 Node(2)-1.0->Node(3) at time 3

Now you've created your first evolving graph! Congrats!

To learn more about evolving graphs and why they are useful, please have a look at our tutorial.

References

  • Weijian Zhang, "Dynamic Network Analysis in Julia", MIMS EPrint, 2015.83, (2015). [pdf]

  • Jiahao Chen and Weijian Zhang, "The Right Way to Search Evolving Graphs", MIMS EPrint, 2016.7, (2016) [pdf] [source]




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap