• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

acroy/Expokit.jl: Julia implementation of EXPOKIT routines

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称:

acroy/Expokit.jl

开源软件地址:

https://github.com/acroy/Expokit.jl

开源编程语言:

Julia 100.0%

开源软件介绍:

Build Status

Expokit

This package provides Julia implementations of some routines contained in EXPOKIT. Those routines allow an efficient calculation of the action of matrix exponentials on vectors for large sparse matrices. For more details about the methods see R.B. Sidje, ACM Trans. Math. Softw., 24(1):130-156, 1998 (or its preprint).

Note: Apart from expmv (which is called expv in EXPOKIT) also phimv, padm and chbv are available.

Usage

Pkg.add("Expokit")

expmv

w = expmv!{T}( w::Vector{T}, t::Number, A, v::Vector{T}; kwargs...)

The function expmv! calculates w = exp(t*A)*v, where A is a matrix or any type that supports size, eltype and mul! and v is a dense vector by using Krylov subspace projections. The result is stored in w.

The following keywords are supported

  • tol: tolerance to control step size (default: 1e-7)
  • m: size of Krylov subspace (default: min(30,size(A,1)))
  • norm: user-supplied function to calculate vector norm (dafault: Base.norm)
  • anorm: operator/matrix norm of A to estimate first time-step (default: opnorm(A, Inf))

For convenience, the following versions of expmv are provided

v = expmv!{T}( t::Number, A, v::Vector{T}; kwargs...)
w = expmv{T}( t::Number, A, v::Vector{T}; kwargs...)

phimv

w = phimv!{T}( w::Vector{T}, t::Number, A, u::Vector{T}, v::Vector{T}; kwargs...)

The function phimv! calculates w = e^{tA}v + t φ(t A) u with φ(z) = (exp(z)-1)/z, where A is a matrix or any type that supports size, eltype and mul!, u and v are dense vectors by using Krylov subspace projections. The result is stored in w. The supported keywords are the same as for expmv!.

chbv

chbv!{T}(w::Vector{T}, A, v::Vector{T})

The function chbv! calculates w = exp(A)*v using the partial fraction expansion of the uniform rational Chebyshev approximation of type (14,14).

padm

padm(A; p=6)

The function padm calculates the matrix exponential exp(A) of A using the irreducible (p,p)-degree rational Pade approximation to the exponential function.




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap