• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

nep-pack/NonlinearEigenproblems.jl: Nonlinear eigenvalue problems in Julia: Iter ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称:

nep-pack/NonlinearEigenproblems.jl

开源软件地址:

https://github.com/nep-pack/NonlinearEigenproblems.jl

开源编程语言:

Julia 99.8%

开源软件介绍:

NEP-PACK

CI Codecov

A nonlinear eigenvalue problem is the problem to determine a scalar λ and a vector v such that

M(λ)v=0

where M is an nxn-matrix depending on a parameter. This package aims to provide state-of-the-art algorithms to solve this problem, as well as a framework to formulate applications and easy access to benchmark problems. This currently includes (but is not restricted to) Newton-type methods, Subspace methods, Krylov methods, contour integral methods, block methods, companion matrix approaches. Problem transformation techniques such as scaling, shifting, deflating are also natively supported by the package.

How to use it?

On Julia 1.X and Julia 0.7, install it as a registered package by typing ] add ... at the REPL-prompt:

julia> ]
(v1.0) pkg> add NonlinearEigenproblems

After that, check out "Getting started" in

NEP-PACK online user's guide

or read the preprint: https://arxiv.org/abs/1811.09592

GIT Version

If you want the cutting edge development version and not the latest release, install it with the URL:

julia> ]
(v1.0) pkg> add git://github.com/nep-pack/NonlinearEigenproblems.jl.git

NEP solvers

Features and solvers (see documentation https://nep-pack.github.io/NonlinearEigenproblems.jl/methods/ for further information and references):

  • Arnoldi/Krylov type
    • NLEIGS
    • Infinite Arnoldi method: (iar)
    • Tensor infinite Arnoldi method (tiar)
    • Infinite bi-Lanczos (infbilanczos)
    • Infinite Lanczos (ilan)
  • Projection methods
    • Jacobi-Davidson (jd_effenberger)
    • Jacobi-Davidson (jd_betcke)
    • Nonlinear Arnoldi method (nlar)
    • Common Rayleigh-Ritz projection interface
  • Contour integral methods
    • Beyn's contour integral method
    • Block SS (Higher moments) contour integral method of Asakura & Sakurai
    • Common quadrature interface for parallelization
  • Newton & Rayleigh type:
    • Classical Newton-Raphson
    • Augmented Newton
    • Residual inverse iteration
    • Quasi-Newton
    • Block Newton
    • Rayleigh functional iteration (RFI a, b)
    • Newton-QR
    • Implicit determinant method
    • Broyden's method
  • Companion matrices
    • First companion form
    • Companion form for Chebyshev polynomials
  • Other
    • Chebyshev interpolation
    • Transformations
    • Rayleigh-Ritz (ProjNEP and inner_solve)
    • Problem gallery (including access to the NLEVP-gallery)
    • Deflation (Effenberger style)

Development

Core developers (alphabetical): Max Bennedich, Elias Jarlebring (www.math.kth.se/~eliasj), Giampaolo Mele (www.math.kth.se/~gmele), Emil Ringh (www.math.kth.se/~eringh), Parikshit Upadhyaya (https://www.kth.se/profile/pup/). Thanks to A Koskela for involvement in initial version of the software.

How to cite

If you find this software useful please cite

@Misc{,
  author = 	 {E. Jarlebring and M. Bennedich and G. Mele and E. Ringh and P. Upadhyaya},
  title = 	 {{NEP-PACK}: A {Julia} package for nonlinear eigenproblems},
  year = 	 {2018},
  note = 	 {https://github.com/nep-pack},
  eprint = {arXiv:1811.09592},
}

If you use a specific method, please also give credit to the algorithm researcher. Reference to a corresponding algorithm paper can be found by in, e.g., by writing ?resinv.

Some links below are developer info on KTH. We will migrate them soon:




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap