• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

JuliaGaussianProcesses/AbstractGPs.jl: Abstract types and methods for Gaussian P ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称:

JuliaGaussianProcesses/AbstractGPs.jl

开源软件地址:

https://github.com/JuliaGaussianProcesses/AbstractGPs.jl

开源编程语言:

Julia 100.0%

开源软件介绍:

AbstractGPs

Docs: stable Docs: dev CI Codecov Code Style: Blue ColPrac: Contributor's Guide on Collaborative Practices for Community Packages DOI

AbstractGPs.jl is a package that defines a low-level API for working with Gaussian processes (GPs), and basic functionality for working with them in the simplest cases. As such it is aimed more at developers and researchers who are interested in using it as a building block than end-users of GPs. You may want to go through the main API design documentation.

GP

Installation

AbstractGPs is an officially registered Julia package, so the following will install AbstractGPs using the Julia's package manager:

] add AbstractGPs

Example

# Import packages.
using AbstractGPs, Plots

# Generate toy synthetic data.
x = rand(10)
y = sin.(x)

# Define GP prior with Matern-3/2 kernel
f = GP(Matern32Kernel())

# Finite projection of `f` at inputs `x`.
# Added Gaussian noise with variance 0.001.
fx = f(x, 0.001)

# Log marginal probability of `y` under `f` at `x`.
# Quantity typically maximised to train hyperparameters.
logpdf(fx, y)

# Exact posterior given `y`. This is another GP.
p_fx = posterior(fx, y)

# Log marginal posterior predictive probability.
logpdf(p_fx(x), y)

# Plot posterior.
scatter(x, y; label="Data")
plot!(-0.5:0.001:1.5, p_fx; label="Posterior")

Related Julia packages

  • AbstractGPsMakie.jl - Plotting GPs with Makie.jl.
  • ApproximateGPs.jl - Approximate inference for GPs, both for sparse approximations and non-Gaussian likelihoods. Built on types which implement this package's APIs.
  • BayesianLinearRegressors.jl - Accelerated inference in GPs with a linear kernel. Built on types which implement this package's APIs.
  • GPLikelihoods.jl - Non-Gaussian likelihood functions to use with GPs.
  • KernelFunctions.jl - Kernel functions for machine learning.
  • Stheno.jl - Building probabilistic programmes involving GPs. Built on types which implement this package's APIs.
  • TemporalGPs.jl - Accelerated inference in GPs involving time. Built on types which implement this package's APIs.

Issues/Contributing

If you notice a problem or would like to contribute by adding more kernel functions or features please submit an issue.




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap