在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
开源软件名称(OpenSource Name):aws/amazon-sagemaker-operator-for-k8s开源软件地址(OpenSource Url):https://github.com/aws/amazon-sagemaker-operator-for-k8s开源编程语言(OpenSource Language):Go 89.6%开源软件介绍(OpenSource Introduction):Amazon SageMaker Operators for KubernetesIntroductionAmazon SageMaker Operators for Kubernetes are operators that can be used to train machine learning models, optimize hyperparameters for a given model, run batch transform jobs over existing models, and set up inference endpoints. With these operators, users can manage their jobs in Amazon SageMaker from their Kubernetes cluster in Amazon Elastic Kubernetes Service EKS. UsageFirst, you must install the operators. After installation is complete, create a TrainingJob YAML specification by following one of the samples, like samples/xgboost-mnist-trainingjob.yaml. Then, use $ kubectl apply -f xgboost-mnist-trainingjob.yaml
trainingjob.sagemaker.aws.amazon.com/xgboost-mnist created
$ kubectl get trainingjob
NAME STATUS SECONDARY-STATUS CREATION-TIME SAGEMAKER-JOB-NAME
xgboost-mnist InProgress Starting 2019-11-26T23:38:11Z xgboost-mnist-cf1e16fb10a511eaaa450a350733ba06 Once the job starts training, you can use a $ kubectl get trainingjob
NAME STATUS SECONDARY-STATUS CREATION-TIME SAGEMAKER-JOB-NAME
xgboost-mnist InProgress Training 2019-11-26T23:38:11Z xgboost-mnist-cf1e16fb10a511eaaa450a350733ba06
$ kubectl smlogs trainingjob xgboost-mnist | head -n 5
"xgboost-mnist" has SageMaker TrainingJobName "xgboost-mnist-cf1e16fb10a511eaaa450a350733ba06" in region "us-east-2", status "InProgress" and secondary status "Training"
xgboost-mnist-cf1e16fb10a511eaaa450a350733ba06/algo-1-1574811611 2019-11-26 15:41:13.449 -0800 PST Arguments: train
xgboost-mnist-cf1e16fb10a511eaaa450a350733ba06/algo-1-1574811611 2019-11-26 15:41:13.449 -0800 PST [2019-11-26:23:41:10:INFO] Running standalone xgboost training.
xgboost-mnist-cf1e16fb10a511eaaa450a350733ba06/algo-1-1574811611 2019-11-26 15:41:13.45 -0800 PST [2019-11-26:23:41:10:INFO] File size need to be processed in the node: 1122.95mb. Available memory size in the node: 8501.08mb
xgboost-mnist-cf1e16fb10a511eaaa450a350733ba06/algo-1-1574811611 2019-11-26 15:41:13.45 -0800 PST [2019-11-26:23:41:10:INFO] Determined delimiter of CSV input is ','
xgboost-mnist-cf1e16fb10a511eaaa450a350733ba06/algo-1-1574811611 2019-11-26 15:41:13.45 -0800 PST [23:41:10] S3DistributionType set as FullyReplicated The Amazon SageMaker Operators for Kubernetes enable management of SageMaker TrainingJobs, HyperParameterTuningJobs, BatchTransformJobs and HostingDeployments (Endpoints). Create and monitor them using the same To install the operators onto your Kubernetes cluster, follow our User Guide. YAML ExamplesTo make a YAML spec, follow one of the below examples as a guide. Replace values like RoleARN, S3 input buckets and S3 output buckets with values that correspond to your account. ReleasesAmazon SageMaker Operator for Kubernetes adheres to the SemVer specification. Each release updates the major version tag (eg. We also maintain a Contributing
LicenseThis project is distributed under the Apache License, Version 2.0, see LICENSE and NOTICE for more information. |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论