We recommend every user of this library and the bitcoinjs ecosystem audit and verify any underlying code for its validity and suitability, including reviewing any and all of your project's dependencies.
Mistakes and bugs happen, but with your help in resolving and reporting issues, together we can produce open source software that is:
Easy to audit and verify,
Tested, with test coverage >95%,
Advanced and feature rich,
Standardized, using prettier and Node Buffer's throughout, and
Friendly, with a strong and helpful community, ready to answer questions.
Documentation
Presently, we do not have any formal documentation other than our examples, please ask for help if our examples aren't enough to guide you.
You can find a Web UI that covers most of the psbt.ts, transaction.ts and p2*.ts APIs here.
Installation
npm install bitcoinjs-lib
# optionally, install a key derivation library as well
npm install ecpair bip32
# ecpair is the ECPair class for single keys# bip32 is for generating HD keys
Previous versions of the library included classes for key management (ECPair, HDNode(->"bip32")) but now these have been separated into different libraries. This lowers the bundle size significantly if you don't need to perform any crypto functions (converting private to public keys and deriving HD keys).
Typically we support the Node Maintenance LTS version. TypeScript target will be set
to the ECMAScript version in which all features are fully supported by current Active Node LTS.
However, depending on adoption among other environments (browsers etc.) we may keep the target back a year or two.
If in doubt, see the main_ci.yml for what versions are used by our continuous integration tests.
WARNING: We presently don't provide any tooling to verify that the release on npm matches GitHub. As such, you should verify anything downloaded by npm against your own verified copy.
Usage
Crypto is hard.
When working with private keys, the random number generator is fundamentally one of the most important parts of any software you write.
For random number generation, we default to the randombytes module, which uses window.crypto.getRandomValues in the browser, or Node js' crypto.randomBytes, depending on your build system.
Although this default is ~OK, there is no simple way to detect if the underlying RNG provided is good enough, or if it is catastrophically bad.
You should always verify this yourself to your own standards.
This library uses tiny-secp256k1, which uses RFC6979 to help prevent k re-use and exploitation.
Unfortunately, this isn't a silver bullet.
Often, Javascript itself is working against us by bypassing these counter-measures.
Problems in Buffer (UInt8Array), for example, can trivially result in catastrophic fund loss without any warning.
It can do this through undermining your random number generation, accidentally producing a duplicate k value, sending Bitcoin to a malformed output script, or any of a million different ways.
Running tests in your target environment is important and a recommended step to verify continuously.
Finally, adhere to best practice.
We are not an authorative source of best practice, but, at the very least:
Don't share BIP32 extended public keys ('xpubs'). They are a liability, and it only takes 1 misplaced private key (or a buggy implementation!) and you are vulnerable to catastrophic fund loss.
The recommended method of using bitcoinjs-lib in your browser is through Browserify.
If you're familiar with how to use browserify, ignore this and carry on, otherwise, it is recommended to read the tutorial at https://browserify.org/.
NOTE: We use Node Maintenance LTS features, if you need strict ES5, use --transform babelify in conjunction with your browserify step (using an es2015 preset).
WARNING: iOS devices have problems, use at least [email protected] or greater, and enforce the test suites (for Buffer, and any other dependency) pass before use.
Typescript or VSCode users
Type declarations for Typescript are included in this library. Normal installation should include all the needed type information.
Examples
The below examples are implemented as integration tests, they should be very easy to understand.
Otherwise, pull requests are appreciated.
Some examples interact (via HTTPS) with a 3rd Party Blockchain Provider (3PBP).
请发表评论