• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

yingliqiao/camX: A proof of concept iOS project combines Deep Learning with IPFS ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称:

yingliqiao/camX

开源软件地址:

https://github.com/yingliqiao/camX

开源编程语言:

Swift 92.8%

开源软件介绍:

Welcome to cam X

cam X is an iOS project written in Swift that I built for ONVIF Open Source Spotlight Challenge

It's a proof of concept project to demonstrate how Deep Learning, IPFS and Blockchain can be applied together in practice.

cam X uses FFmpeg library to decode and stream live video from cameras use ONVIF protocol, HTTP, RTSP or iOS device build-in cameras. It equips with Tiny Yolo and Yolo 2 deep learning object detection models as video analytics engine on camera. Users are given options to pick any object class to detect or raise alarm. Users manually pick alarm to save to IPFS. iOS device UUID used as key to store alarm hash to Ethereum Rinkeby Test Network via a simple lookup smart contract.

I posted an article on Medium to explain the project in details Deep Learning + IPFS + Ethereum Blockchain in practice

Installation

  1. Run FFmpeg-iOS-build-script to build FFmpeg library for iOS.

  2. Run 'pod update' in root directory to install ONVIFCamera library.

  3. Install Carthage and run 'carthage update --platform iOS' to install web3swift library and swift-ipfs-api library.

  4. Run download.sh shell script to download pre-trained CoreML models: Tiny Yolo and Yolo 2.

  5. Then you can build the project in Xcode. You need minimum iOS 11.0 to run the app.

User Guide

See cam X page for detailed slides and screenshots. Alternatively, I made demo videos on network cameras and iPad Pro backward facing camera

Screenshots

Video Alarm IPFS Transaction




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap