• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

C++ VectorFloat类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C++中VectorFloat的典型用法代码示例。如果您正苦于以下问题:C++ VectorFloat类的具体用法?C++ VectorFloat怎么用?C++ VectorFloat使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了VectorFloat类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。

示例1: b

VectorFloat MatrixFloat::multiple(const VectorFloat &b) const{
    
    const unsigned int M = rows;
    const unsigned int N = cols;
    const unsigned int K = (unsigned int)b.size();
    
    if( N != K ){
        warningLog << "multiple(vector b) - The size of b (" << b.size() << ") does not match the number of columns in this matrix (" << N << ")" << std::endl;
        return VectorFloat();
    }
    
    VectorFloat c(M);
    const Float *pb = &b[0];
    Float *pc = &c[0];
    
    unsigned int i,j = 0;
    for(i=0; i<rows; i++){
        pc[i] = 0;
        for(j=0; j<cols; j++){
            pc[i] += dataPtr[i*cols+j]*pb[j];
        }
    }
    
    return c;
}
开发者ID:pscholl,项目名称:grt,代码行数:25,代码来源:MatrixFloat.cpp


示例2: ComputePP

VectorFloat AttitudeLoop::ComputePP(Quaternion qM, VectorFloat omegaM) {
    Quaternion qErr;
    VectorFloat axisErr;

    Serial.print("Printing qRef ");
    fQRef.print();
    Serial.print("Printing qM ");
    qM.print();
    qErr = fQRef.conjugate() * qM;
    Serial.print("Printing qErr ");
    qErr.print();

    if(qErr.w < 0) axisErr = VectorFloat(qErr);
    else axisErr = -VectorFloat(qErr);

    Serial.print("Printing axisErr ");
    axisErr.print();
    Serial.print("Printing omegaM ");
    omegaM.print();
    Serial.print("Printing torque without I ");
    (axisErr*fPQ - omegaM*fPOmega).print();
    fTorque = fI * (axisErr*fPQ - omegaM*fPOmega);
    Serial.print("Printing fTorque ");
    fTorque.print();


    return fTorque;
}
开发者ID:nlurkin,项目名称:Drone,代码行数:28,代码来源:AttitudeLoop.cpp


示例3: generate_rows

void generate_rows (
        const protobuf::Config::Generate & config,
        CrossCat & cross_cat,
        Assignments & assignments,
        const char * rows_out,
        rng_t & rng)
{
    const size_t kind_count = cross_cat.kinds.size();
    const size_t row_count = config.row_count();
    const float density = config.density();
    LOOM_ASSERT_LE(0.0, density);
    LOOM_ASSERT_LE(density, 1.0);
    VectorFloat scores;
    std::vector<ProductModel::Value> partial_values(kind_count);
    protobuf::Row row;
    protobuf::OutFile rows(rows_out);

    for (auto & kind : cross_cat.kinds) {
        kind.model.realize(rng);
    }

    cross_cat.schema.clear(* row.mutable_diff());
    ProductValue & full_value = * row.mutable_diff()->mutable_pos();
    for (size_t id = 0; id < row_count; ++id) {
        assignments.rowids().try_push(id);

        for (size_t k = 0; k < kind_count; ++k) {
            auto & kind = cross_cat.kinds[k];
            ProductModel & model = kind.model;
            auto & mixture = kind.mixture;
            ProductValue & value = partial_values[k];
            auto & groupids = assignments.groupids(k);

            scores.resize(mixture.clustering.counts().size());
            mixture.clustering.score_value(model.clustering, scores);
            distributions::scores_to_probs(scores);
            const VectorFloat & probs = scores;

            auto & observed = * value.mutable_observed();
            ValueSchema::clear(observed);
            observed.set_sparsity(ProductModel::Value::Observed::DENSE);
            const size_t feature_count = kind.featureids.size();
            for (size_t f = 0; f < feature_count; ++f) {
                observed.add_dense(
                    distributions::sample_bernoulli(rng, density));
            }
            size_t groupid = mixture.sample_value(model, probs, value, rng);

            model.add_value(value, rng);
            mixture.add_value(model, groupid, value, rng);
            groupids.push(groupid);
        }

        row.set_id(id);
        cross_cat.splitter.join(full_value, partial_values);
        rows.write_stream(row);
    }
}
开发者ID:jostheim,项目名称:loom,代码行数:58,代码来源:generate.hpp


示例4: predict_

bool Softmax::predict_(VectorFloat &inputVector){
    
    if( !trained ){
        errorLog << __GRT_LOG__ << " Model Not Trained!" << std::endl;
        return false;
    }
    
    predictedClassLabel = 0;
    maxLikelihood = -10000;
    
    if( !trained ) return false;
    
    if( inputVector.getSize() != numInputDimensions ){
        errorLog << __GRT_LOG__ << " The size of the input vector (" << inputVector.getSize() << ") does not match the num features in the model (" << numInputDimensions << std::endl;
        return false;
    }
    
    if( useScaling ){
        for(UINT n=0; n<numInputDimensions; n++){
            inputVector[n] = scale(inputVector[n], ranges[n].minValue, ranges[n].maxValue, 0, 1);
        }
    }
    
    if( classLikelihoods.size() != numClasses ) classLikelihoods.resize(numClasses,0);
    if( classDistances.size() != numClasses ) classDistances.resize(numClasses,0);
    
    //Loop over each class and compute the likelihood of the input data coming from class k. Pick the class with the highest likelihood
    Float sum = 0;
    Float bestEstimate = -grt_numeric_limits< Float >::max();
    UINT bestIndex = 0;
    for(UINT k=0; k<numClasses; k++){
        Float estimate = models[k].compute( inputVector );
        
        if( estimate > bestEstimate ){
            bestEstimate = estimate;
            bestIndex = k;
        }
        
        classDistances[k] = estimate;
        classLikelihoods[k] = estimate;
        sum += estimate;
    }
    
    if( sum > 1.0e-5 ){
        for(UINT k=0; k<numClasses; k++){
            classLikelihoods[k] /= sum;
        }
    }else{
        //If the sum is less than the value above then none of the models found a positive class
        maxLikelihood = bestEstimate;
        predictedClassLabel = GRT_DEFAULT_NULL_CLASS_LABEL;
        return true;
    }
    maxLikelihood = classLikelihoods[bestIndex];
    predictedClassLabel = classLabels[bestIndex];
    
    return true;
}
开发者ID:nickgillian,项目名称:grt,代码行数:58,代码来源:Softmax.cpp


示例5: input

bool FFT::update(const VectorFloat &x){

    if( !initialized ){
        errorLog << "update(const VectorFloat &x) - Not initialized!" << std::endl;
        return false;
    }
    
    if( x.size() != numInputDimensions ){
        errorLog << "update(const VectorFloat &x) - The size of the input (" << x.size() << ") does not match that of the FeatureExtraction (" << numInputDimensions << ")!" << std::endl;
        return false;
    }

    //Add the current input to the data buffers
    dataBuffer.push_back( x );
    
    featureDataReady = false;
    
    if( ++hopCounter == hopSize ){
        hopCounter = 0;
        //Compute the FFT for each dimension
        for(UINT j=0; j<numInputDimensions; j++){
            
            //Copy the input data for this dimension into the temp buffer
            for(UINT i=0; i<dataBufferSize; i++){
                tempBuffer[i] = dataBuffer[i][j];
            }
            
            //Compute the FFT
            if( !fft[j].computeFFT( tempBuffer ) ){
                errorLog << "update(const VectorFloat &x) - Failed to compute FFT!" << std::endl;
                return false;
            }
        }
        
        //Flag that the fft was computed during this update
        featureDataReady = true;
        
        //Copy the FFT data to the feature vector
        UINT index = 0;
        for(UINT j=0; j<numInputDimensions; j++){
            if( computeMagnitude ){
                Float *mag = fft[j].getMagnitudeDataPtr();
                for(UINT i=0; i<fft[j].getFFTSize()/2; i++){
                    featureVector[index++] = *mag++;
                }
            }
            if( computePhase ){
                Float *phase = fft[j].getPhaseDataPtr();
                for(UINT i=0; i<fft[j].getFFTSize()/2; i++){
                    featureVector[index++] = *phase++;
                }
            }
        }
    }
    
    return true;
}
开发者ID:BryanBo-Cao,项目名称:grt,代码行数:57,代码来源:FFT.cpp


示例6: getAngle

////////////
// Camera //
////////////
static float getAngle(VectorFloat vec1,VectorFloat vec2)
{
	float cosPhi = (vec1*vec2)/(vec1.length()*vec2.length());
	
	if (vec1.y>=vec2.y)
		return (float)acos(cosPhi);
	else
		return -(float)acos(cosPhi);
}
开发者ID:hakan64,项目名称:sdl,代码行数:12,代码来源:Camera.cpp


示例7: TEST

// Tests the VectorFloat type
TEST(DynamicType, VectorFloatTest) {
  DynamicType type;
  VectorFloat a(3);
  a[0] = 1.1; a[1] = 1.2; a[2] = 1.3;
  EXPECT_TRUE( type.set( a ) );
  VectorFloat b = type.get< VectorFloat >();
  EXPECT_EQ( a.getSize(), b.getSize() );
  for(unsigned int i=0; i<a.getSize(); i++){
    EXPECT_EQ( a[i], b[i] );
  }
}
开发者ID:sgrignard,项目名称:grt,代码行数:12,代码来源:DynamicTypeTest.cpp


示例8: newPoint

void Calibrator::newPoint(int motor, float p, VectorFloat omega, VectorFloat alpha, VectorFloat acceleration, Quaternion q) {
	cout << p;
	omega.print();
	alpha.print();
	acceleration.print();
	q.print();
	fP[motor].push_back(p);
	fOmega[motor].push_back(omega);
	fAlpha[motor].push_back(alpha);
	fA[motor].push_back(acceleration);
	fQ[motor].push_back(q);
}
开发者ID:nlurkin,项目名称:Drone,代码行数:12,代码来源:Calibrator.cpp


示例9: computeDerivative

Float Derivative::computeDerivative(const Float x) {

    if( numInputDimensions != 1 ) {
        errorLog << "computeDerivative(const Float x) - The Number Of Input Dimensions is not 1! NumInputDimensions: " << numInputDimensions << std::endl;
        return 0;
    }

    VectorFloat y = computeDerivative( VectorFloat(1,x) );

    if( y.size() == 0 ) return 0 ;

    return y[0];
}
开发者ID:codeflakes0,项目名称:grt,代码行数:13,代码来源:Derivative.cpp


示例10: filter

Float DoubleMovingAverageFilter::filter(const Float x){
    
    //If the filter has not been initialised then return 0, otherwise filter x and return y
    if( !initialized ){
        errorLog << "filter(const Float x) - The filter has not been initialized!" << std::endl;
        return 0;
    }
    
    VectorFloat y = filter(VectorFloat(1,x));
    
    if( y.getSize() == 0 ) return 0;
    return y[0];
}
开发者ID:sboettcher,项目名称:grt,代码行数:13,代码来源:DoubleMovingAverageFilter.cpp


示例11: filter

Float SavitzkyGolayFilter::filter(const Float x){
    
    //If the filter has not been initialised then return 0, otherwise filter x and return y
    if( !initialized ){
        errorLog << "filter(Float x) - The filter has not been initialized!" << std::endl;
        return 0;
    }
    
    VectorFloat y = filter(VectorFloat(1,x));
    
    if( y.size() > 0 ) return y[0];
	return 0;
}
开发者ID:sboettcher,项目名称:grt,代码行数:13,代码来源:SavitzkyGolayFilter.cpp


示例12: sample

bool ClassificationData::addSample(const UINT classLabel,const VectorFloat &sample){
    
	if( sample.getSize() != numDimensions ){
        if( totalNumSamples == 0 ){
            warningLog << "addSample(const UINT classLabel, VectorFloat &sample) - the size of the new sample (" << sample.getSize() << ") does not match the number of dimensions of the dataset (" << numDimensions << "), setting dimensionality to: " << numDimensions << std::endl;
            numDimensions = sample.getSize();
        }else{
            errorLog << "addSample(const UINT classLabel, VectorFloat &sample) - the size of the new sample (" << sample.getSize() << ") does not match the number of dimensions of the dataset (" << numDimensions << ")" << std::endl;
            return false;
        }
    }

    //The class label must be greater than zero (as zero is used for the null rejection class label
    if( classLabel == GRT_DEFAULT_NULL_CLASS_LABEL && !allowNullGestureClass ){
        errorLog << "addSample(const UINT classLabel, VectorFloat &sample) - the class label can not be 0!" << std::endl;
        return false;
    }

    //The dataset has changed so flag that any previous cross validation setup will now not work
    crossValidationSetup = false;
    crossValidationIndexs.clear();

	ClassificationSample newSample(classLabel,sample);
	data.push_back( newSample );
	totalNumSamples++;

	if( classTracker.getSize() == 0 ){
		ClassTracker tracker(classLabel,1);
		classTracker.push_back(tracker);
	}else{
		bool labelFound = false;
		for(UINT i=0; i<classTracker.getSize(); i++){
			if( classLabel == classTracker[i].classLabel ){
				classTracker[i].counter++;
				labelFound = true;
				break;
			}
		}
		if( !labelFound ){
			ClassTracker tracker(classLabel,1);
			classTracker.push_back(tracker);
		}
	}

    //Update the class labels
    sortClassLabels();

	return true;
}
开发者ID:sgrignard,项目名称:grt,代码行数:49,代码来源:ClassificationData.cpp


示例13: main

int main (int argc, const char * argv[])
{
    //Load the example data
    ClassificationData data;
    
    if( !data.load("WiiAccShakeData.grt") ){
        cout << "ERROR: Failed to load data from file!\n";
        return EXIT_FAILURE;
    }

    //The variables used to initialize the MovementIndex feature extraction
    UINT windowSize = 10;
    UINT numDimensions = data.getNumDimensions();

    //Create a new instance of the MovementIndex feature extraction
    MovementIndex movementIndex(windowSize,numDimensions);
    
    //Loop over the accelerometer data, at each time sample (i) compute the features using the new sample and then write the results to a file
    for(UINT i=0; i<data.getNumSamples(); i++){
        
        //Compute the features using this new sample
        movementIndex.computeFeatures( data[i].getSample() );
        
        //Write the data
        cout << "InputVector: ";
        for(UINT j=0; j<data.getNumDimensions(); j++){
           cout << data[i].getSample()[j] << "\t";
        }
        
        //Get the latest feature vector
        VectorFloat featureVector = movementIndex.getFeatureVector();
        
        //Write the features
        cout << "FeatureVector: ";
        for(UINT j=0; j<featureVector.size(); j++){
            cout << featureVector[j];
            if( j != featureVector.size()-1 ) cout << "\t";
        }
        cout << endl;
    }
    
    //Save the MovementIndex settings to a file
    movementIndex.save("MovementIndexSettings.grt");
    
    //You can then load the settings again if you need them
    movementIndex.load("MovementIndexSettings.grt");
    
    return EXIT_SUCCESS;
}
开发者ID:BryanBo-Cao,项目名称:grt,代码行数:49,代码来源:MovementIndexExample.cpp


示例14: Vector

bool LinearRegression::predict_(VectorFloat &inputVector){
    
    if( !trained ){
        errorLog << "predict_(VectorFloat &inputVector) - Model Not Trained!" << std::endl;
        return false;
    }
    
    if( !trained ) return false;
    
	if( inputVector.size() != numInputDimensions ){
        errorLog << "predict_(VectorFloat &inputVector) - The size of the input Vector (" << int( inputVector.size() ) << ") does not match the num features in the model (" << numInputDimensions << std::endl;
		return false;
	}
    
    if( useScaling ){
        for(UINT n=0; n<numInputDimensions; n++){
            inputVector[n] = scale(inputVector[n], inputVectorRanges[n].minValue, inputVectorRanges[n].maxValue, 0, 1);
        }
    }
    
    regressionData[0] =  w0;
    for(UINT j=0; j<numInputDimensions; j++){
        regressionData[0] += inputVector[j] * w[j];
    }
    
    if( useScaling ){
        for(UINT n=0; n<numOutputDimensions; n++){
            regressionData[n] = scale(regressionData[n], 0, 1, targetVectorRanges[n].minValue, targetVectorRanges[n].maxValue);
        }
    }
    
    return true;
}
开发者ID:BryanBo-Cao,项目名称:grt,代码行数:33,代码来源:LinearRegression.cpp


示例15: Vector

bool RegressionTree::predict_(VectorFloat &inputVector){
    
    if( !trained ){
        Regressifier::errorLog << "predict_(VectorFloat &inputVector) - Model Not Trained!" << std::endl;
        return false;
    }
    
    if( tree == NULL ){
        Regressifier::errorLog << "predict_(VectorFloat &inputVector) - Tree pointer is null!" << std::endl;
        return false;
    }
    
    if( inputVector.size() != numInputDimensions ){
        Regressifier::errorLog << "predict_(VectorFloat &inputVector) - The size of the input Vector (" << inputVector.size() << ") does not match the num features in the model (" << numInputDimensions << std::endl;
        return false;
    }
    
    if( useScaling ){
        for(UINT n=0; n<numInputDimensions; n++){
            inputVector[n] = scale(inputVector[n], inputVectorRanges[n].minValue, inputVectorRanges[n].maxValue, 0, 1);
        }
    }
    
    if( !tree->predict( inputVector, regressionData ) ){
        Regressifier::errorLog << "predict_(VectorFloat &inputVector) - Failed to predict!" << std::endl;
        return false;
    }
    
    return true;
}
开发者ID:sboettcher,项目名称:grt,代码行数:30,代码来源:RegressionTree.cpp


示例16: inputVector

UINT KMeansQuantizer::quantize(const VectorFloat &inputVector){
	
    if( !trained ){
        errorLog << "computeFeatures(const VectorFloat &inputVector) - The quantizer has not been trained!" << std::endl;
        return 0;
    }

    if( inputVector.getSize() != numInputDimensions ){
        errorLog << "computeFeatures(const VectorFloat &inputVector) - The size of the inputVector (" << inputVector.getSize() << ") does not match that of the filter (" << numInputDimensions << ")!" << std::endl;
        return 0;
    }

	//Find the minimum cluster
    Float minDist = grt_numeric_limits< Float >::max();
    UINT quantizedValue = 0;
    
    for(UINT k=0; k<numClusters; k++){
        //Compute the squared Euclidean distance
        quantizationDistances[k] = 0;
        for(UINT i=0; i<numInputDimensions; i++){
            quantizationDistances[k] += grt_sqr( inputVector[i]-clusters[k][i] );
        }
        if( quantizationDistances[k] < minDist ){
            minDist = quantizationDistances[k];
            quantizedValue = k;
        }
    }
    
    featureVector[0] = quantizedValue;
    featureDataReady = true;
	
	return quantizedValue;
}
开发者ID:pscholl,项目名称:grt,代码行数:33,代码来源:KMeansQuantizer.cpp


示例17: VectorFloat

VectorFloat Derivative::computeDerivative(const VectorFloat &x) {

    if( !initialized ) {
        errorLog << "computeDerivative(const VectorFloat &x) - Not Initialized!" << std::endl;
        return VectorFloat();
    }

    if( x.size() != numInputDimensions ) {
        errorLog << "computeDerivative(const VectorFloat &x) - The Number Of Input Dimensions (" << numInputDimensions << ") does not match the size of the input vector (" << x.size() << ")!" << std::endl;
        return VectorFloat();
    }

    VectorFloat y;
    if( filterData ) {
        y = filter.filter( x );
    } else y = x;

    for(UINT n=0; n<numInputDimensions; n++) {
        processedData[n] = (y[n]-yy[n])/delta;
        yy[n] = y[n];
    }

    if( derivativeOrder == SECOND_DERIVATIVE ) {
        Float tmp = 0;
        for(UINT n=0; n<numInputDimensions; n++) {
            tmp = processedData[n];
            processedData[n] = (processedData[n]-yyy[n])/delta;
            yyy[n] = tmp;
        }
    }

    return processedData;
}
开发者ID:codeflakes0,项目名称:grt,代码行数:33,代码来源:Derivative.cpp


示例18: inputVector

UINT RBMQuantizer::quantize(const VectorFloat &inputVector){
    
    if( !trained ){
        errorLog << "quantize(const VectorFloat &inputVector) - The quantizer model has not been trained!" << std::endl;
        return 0;
    }
    
    if( inputVector.getSize() != numInputDimensions ){
        errorLog << "quantize(const VectorFloat &inputVector) - The size of the inputVector (" << inputVector.getSize() << ") does not match that of the filter (" << numInputDimensions << ")!" << std::endl;
        return 0;
    }
    
    if( !rbm.predict( inputVector ) ){
        errorLog << "quantize(const VectorFloat &inputVector) - Failed to quantize input!" << std::endl;
        return 0;
    }
    
    quantizationDistances = rbm.getOutputData();
    
    //Search for the neuron with the maximum output
    UINT quantizedValue = 0;
    Float maxValue = 0;
    for(UINT k=0; k<numClusters; k++){
        if( quantizationDistances[k] > maxValue ){
            maxValue = quantizationDistances[k];
            quantizedValue = k;
        }
    }
    
    featureVector[0] = quantizedValue;
    featureDataReady = true;
    
    return quantizedValue;
}
开发者ID:sgrignard,项目名称:grt,代码行数:34,代码来源:RBMQuantizer.cpp


示例19: Vector

bool MultidimensionalRegression::predict_(VectorFloat &inputVector){
    
    if( !trained ){
        errorLog << "predict_(VectorFloat &inputVector) - Model Not Trained!" << std::endl;
        return false;
    }
    
    if( !trained ) return false;
    
	if( inputVector.getSize() != numInputDimensions ){
        errorLog << "predict_(VectorFloat &inputVector) - The size of the input Vector (" << inputVector.getSize() << ") does not match the num features in the model (" << numInputDimensions << std::endl;
		return false;
	}
    
    if( useScaling ){
        for(UINT n=0; n<numInputDimensions; n++){
            inputVector[n] = grt_scale(inputVector[n], inputVectorRanges[n].minValue, inputVectorRanges[n].maxValue, 0.0, 1.0);
        }
    }
    
    for(UINT n=0; n<numOutputDimensions; n++){
        if( !regressionModules[ n ]->predict( inputVector ) ){
            errorLog << "predict_(VectorFloat &inputVector) - Failed to predict for regression module " << n << std::endl;
        }
        regressionData[ n ] = regressionModules[ n ]->getRegressionData()[0];
    }
    
    if( useScaling ){
        for(UINT n=0; n<numOutputDimensions; n++){
            regressionData[n] = grt_scale(regressionData[n], 0.0, 1.0, targetVectorRanges[n].minValue, targetVectorRanges[n].maxValue);
        }
    }
    
    return true;
}
开发者ID:BryanBo-Cao,项目名称:grt,代码行数:35,代码来源:MultidimensionalRegression.cpp


示例20: VectorFloat

VectorFloat MovingAverageFilter::filter(const VectorFloat &x){
    
    //If the filter has not been initialised then return 0, otherwise filter x and return y
    if( !initialized ){
        errorLog << "filter(const VectorFloat &x) - The filter has not been initialized!" << std::endl;
        return VectorFloat();
    }
    
    if( x.size() != numInputDimensions ){
        errorLog << "filter(const VectorFloat &x) - The size of the input vector (" << x.getSize() << ") does not match that of the number of dimensions of the filter (" << numInputDimensions << ")!" << std::endl;
        return VectorFloat();
    }
    
    if( ++inputSampleCounter > filterSize ) inputSampleCounter = filterSize;
    
    //Add the new value to the buffer
    dataBuffer.push_back( x );
    
    for(unsigned int j=0; j<numInputDimensions; j++){
        processedData[j] = 0;
        for(unsigned int i=0; i<inputSampleCounter; i++) {
            processedData[j] += dataBuffer[i][j];
        }
        processedData[j] /= Float(inputSampleCounter);
    }
    
    return processedData;
}
开发者ID:CV-IP,项目名称:grt,代码行数:28,代码来源:MovingAverageFilter.cpp



注:本文中的VectorFloat类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C++ VectorI类代码示例发布时间:2022-05-31
下一篇:
C++ VectorF类代码示例发布时间:2022-05-31
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap