• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

C++ VectorValues类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C++中VectorValues的典型用法代码示例。如果您正苦于以下问题:C++ VectorValues类的具体用法?C++ VectorValues怎么用?C++ VectorValues使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了VectorValues类的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。

示例1: TEST

/* ************************************************************************* */
TEST( ISAM, iSAM_smoother )
{
  Ordering ordering;
  for (int t = 1; t <= 7; t++) ordering += X(t);

  // Create smoother with 7 nodes
  GaussianFactorGraph smoother = createSmoother(7);

  // run iSAM for every factor
  GaussianISAM actual;
  for(boost::shared_ptr<GaussianFactor> factor: smoother) {
    GaussianFactorGraph factorGraph;
    factorGraph.push_back(factor);
    actual.update(factorGraph);
  }

  // Create expected Bayes Tree by solving smoother with "natural" ordering
  GaussianBayesTree expected = *smoother.eliminateMultifrontal(ordering);

  // Verify sigmas in the bayes tree
  for(const GaussianBayesTree::sharedClique& clique: expected.nodes() | br::map_values) {
    GaussianConditional::shared_ptr conditional = clique->conditional();
    EXPECT(!conditional->get_model());
  }

  // Check whether BayesTree is correct
  EXPECT(assert_equal(GaussianFactorGraph(expected).augmentedHessian(), GaussianFactorGraph(actual).augmentedHessian()));

  // obtain solution
  VectorValues e; // expected solution
  for (int t = 1; t <= 7; t++) e.insert(X(t), Vector::Zero(2));
  VectorValues optimized = actual.optimize(); // actual solution
  EXPECT(assert_equal(e, optimized));
}
开发者ID:haidai,项目名称:gtsam,代码行数:35,代码来源:testGaussianISAM.cpp


示例2: TEST

/* ************************************************************************* */
TEST(GaussianFactorGraph, multiplyHessianAdd2) {
  GaussianFactorGraph gfg = createGaussianFactorGraphWithHessianFactor();

  // brute force
  Matrix AtA;
  Vector eta;
  boost::tie(AtA, eta) = gfg.hessian();
  Vector X(6);
  X << 1, 2, 3, 4, 5, 6;
  Vector Y(6);
  Y << -450, -450, 300, 400, 2950, 3450;
  EXPECT(assert_equal(Y, AtA * X));

  VectorValues x = map_list_of<Key, Vector>(0, Vector2(1, 2))(1, Vector2(3, 4))(2, Vector2(5, 6));

  VectorValues expected;
  expected.insert(0, Vector2(-450, -450));
  expected.insert(1, Vector2(300, 400));
  expected.insert(2, Vector2(2950, 3450));

  VectorValues actual;
  gfg.multiplyHessianAdd(1.0, x, actual);
  EXPECT(assert_equal(expected, actual));

  // now, do it with non-zero y
  gfg.multiplyHessianAdd(1.0, x, actual);
  EXPECT(assert_equal(2 * expected, actual));
}
开发者ID:haidai,项目名称:gtsam,代码行数:29,代码来源:testGaussianFactorGraph.cpp


示例3:

VectorValues KeyInfo::x0() const {
  VectorValues result;
  BOOST_FOREACH ( const KeyInfo::value_type &item, *this ) {
    result.insert(item.first, Vector::Zero(item.second.dim()));
  }
  return result;
}
开发者ID:exoter-rover,项目名称:slam-gtsam,代码行数:7,代码来源:IterativeSolver.cpp


示例4: gttic

  /* ************************************************************************* */
  VectorValues GaussianFactorGraph::optimizeGradientSearch() const
  {
    gttic(GaussianFactorGraph_optimizeGradientSearch);

    gttic(Compute_Gradient);
    // Compute gradient (call gradientAtZero function, which is defined for various linear systems)
    VectorValues grad = gradientAtZero();
    double gradientSqNorm = grad.dot(grad);
    gttoc(Compute_Gradient);

    gttic(Compute_Rg);
    // Compute R * g
    Errors Rg = *this * grad;
    gttoc(Compute_Rg);

    gttic(Compute_minimizing_step_size);
    // Compute minimizing step size
    double step = -gradientSqNorm / dot(Rg, Rg);
    gttoc(Compute_minimizing_step_size);

    gttic(Compute_point);
    // Compute steepest descent point
    grad *= step;
    gttoc(Compute_point);

    return grad;
  }
开发者ID:DForger,项目名称:gtsam,代码行数:28,代码来源:GaussianFactorGraph.cpp


示例5: endParents

  /* ************************************************************************* */
  VectorValues GaussianConditional::solve(const VectorValues& x) const
  {
    // Concatenate all vector values that correspond to parent variables
    const Vector xS = x.vector(FastVector<Key>(beginParents(), endParents()));

    // Update right-hand-side
    const Vector rhs = get_d() - get_S() * xS;

    // Solve matrix
    const Vector solution = get_R().triangularView<Eigen::Upper>().solve(rhs);

    // Check for indeterminant solution
    if (solution.hasNaN()) {
      throw IndeterminantLinearSystemException(keys().front());
    }

    // Insert solution into a VectorValues
    VectorValues result;
    DenseIndex vectorPosition = 0;
    for (const_iterator frontal = beginFrontals(); frontal != endFrontals(); ++frontal) {
      result.insert(*frontal, solution.segment(vectorPosition, getDim(frontal)));
      vectorPosition += getDim(frontal);
    }

    return result;
  }
开发者ID:haidai,项目名称:gtsam,代码行数:27,代码来源:GaussianConditional.cpp


示例6: TEST

/* ************************************************************************* */
TEST(VectorValues, resizeLike) {
  // insert, with out-of-order indices
  VectorValues original;
  original.insert(0, Vector_(1, 1.0));
  original.insert(1, Vector_(2, 2.0, 3.0));
  original.insert(5, Vector_(2, 6.0, 7.0));
  original.insert(2, Vector_(2, 4.0, 5.0));

  VectorValues actual(10, 3);
  actual.resizeLike(original);

  // Check dimensions
  LONGS_EQUAL(6, actual.size());
  LONGS_EQUAL(7, actual.dim());
  LONGS_EQUAL(1, actual.dim(0));
  LONGS_EQUAL(2, actual.dim(1));
  LONGS_EQUAL(2, actual.dim(2));
  LONGS_EQUAL(2, actual.dim(5));

  // Logic
  EXPECT(actual.exists(0));
  EXPECT(actual.exists(1));
  EXPECT(actual.exists(2));
  EXPECT(!actual.exists(3));
  EXPECT(!actual.exists(4));
  EXPECT(actual.exists(5));
  EXPECT(!actual.exists(6));

  // Check exceptions
  CHECK_EXCEPTION(actual.insert(1, Vector()), invalid_argument);
}
开发者ID:gburachas,项目名称:gtsam_pcl,代码行数:32,代码来源:testVectorValues.cpp


示例7: TEST

/* ************************************************************************* */
TEST(HessianFactor, CombineAndEliminate2) {
  Matrix A01 = I_3x3;
  Vector3 b0(1.5, 1.5, 1.5);
  Vector3 s0(1.6, 1.6, 1.6);

  Matrix A10 = 2.0 * I_3x3;
  Matrix A11 = -2.0 * I_3x3;
  Vector3 b1(2.5, 2.5, 2.5);
  Vector3 s1(2.6, 2.6, 2.6);

  Matrix A21 = 3.0 * I_3x3;
  Vector3 b2(3.5, 3.5, 3.5);
  Vector3 s2(3.6, 3.6, 3.6);

  GaussianFactorGraph gfg;
  gfg.add(1, A01, b0, noiseModel::Diagonal::Sigmas(s0, true));
  gfg.add(0, A10, 1, A11, b1, noiseModel::Diagonal::Sigmas(s1, true));
  gfg.add(1, A21, b2, noiseModel::Diagonal::Sigmas(s2, true));

  Matrix93 A0, A1;
  A0 << A10, Z_3x3, Z_3x3;
  A1 << A11, A01, A21;
  Vector9 b, sigmas;
  b << b1, b0, b2;
  sigmas << s1, s0, s2;

  // create a full, uneliminated version of the factor
  JacobianFactor jacobian(0, A0, 1, A1, b,
      noiseModel::Diagonal::Sigmas(sigmas, true));

  // Make sure combining works
  HessianFactor hessian(gfg);
  EXPECT(assert_equal(HessianFactor(jacobian), hessian, 1e-6));
  EXPECT(
      assert_equal(jacobian.augmentedInformation(),
          hessian.augmentedInformation(), 1e-9));

  // perform elimination on jacobian
  Ordering ordering = list_of(0);
  GaussianConditional::shared_ptr expectedConditional;
  JacobianFactor::shared_ptr expectedFactor;
  boost::tie(expectedConditional, expectedFactor) = //
      jacobian.eliminate(ordering);

  // Eliminate
  GaussianConditional::shared_ptr actualConditional;
  HessianFactor::shared_ptr actualHessian;
  boost::tie(actualConditional, actualHessian) = //
      EliminateCholesky(gfg, ordering);

  EXPECT(assert_equal(*expectedConditional, *actualConditional, 1e-6));
  VectorValues v;
  v.insert(1, Vector3(1, 2, 3));
  EXPECT_DOUBLES_EQUAL(expectedFactor->error(v), actualHessian->error(v), 1e-9);
  EXPECT(
      assert_equal(expectedFactor->augmentedInformation(),
          actualHessian->augmentedInformation(), 1e-9));
  EXPECT(assert_equal(HessianFactor(*expectedFactor), *actualHessian, 1e-6));
}
开发者ID:exoter-rover,项目名称:slam-gtsam,代码行数:60,代码来源:testHessianFactor.cpp


示例8: TEST

/* ************************************************************************* */
TEST(LPSolver, LinearCost) {
  LinearCost cost(1, Vector3(2., 4., 6.));
  VectorValues x;
  x.insert(1, Vector3(1., 3., 5.));
  double error = cost.error(x);
  double expectedError = 44.0;
  DOUBLES_EQUAL(expectedError, error, 1e-100);
}
开发者ID:haidai,项目名称:gtsam,代码行数:9,代码来源:testLPSolver.cpp


示例9: error

/* ************************************************************************* */
double HessianFactor::error(const VectorValues& c) const {
	// error 0.5*(f - 2*x'*g + x'*G*x)
	const double f = constantTerm();
	const double xtg = c.vector().dot(linearTerm());
	const double xGx = c.vector().transpose() * info_.range(0, this->size(), 0, this->size()).selfadjointView<Eigen::Upper>() *	c.vector();

	return 0.5 * (f - 2.0 * xtg +  xGx);
}
开发者ID:gburachas,项目名称:gtsam_pcl,代码行数:9,代码来源:HessianFactor.cpp


示例10: BOOST_FOREACH

 /* ************************************************************************* */
 VectorValues GaussianFactorGraph::gradientAtZero() const {
   // Zero-out the gradient
   VectorValues g;
   BOOST_FOREACH(const sharedFactor& factor, *this) {
     VectorValues gi = factor->gradientAtZero();
     g.addInPlace_(gi);
   }
   return g;
 }
开发者ID:DForger,项目名称:gtsam,代码行数:10,代码来源:GaussianFactorGraph.cpp


示例11: TEST

/* ************************************************************************* */
TEST(GaussianBayesNet, ComputeSteepestDescentPoint) {

  // Create an arbitrary Bayes Net
  GaussianBayesNet gbn;
  gbn += GaussianConditional::shared_ptr(new GaussianConditional(
    0, Vector2(1.0,2.0), (Matrix(2, 2) << 3.0,4.0,0.0,6.0).finished(),
    3, (Matrix(2, 2) << 7.0,8.0,9.0,10.0).finished(),
    4, (Matrix(2, 2) << 11.0,12.0,13.0,14.0).finished()));
  gbn += GaussianConditional::shared_ptr(new GaussianConditional(
    1, Vector2(15.0,16.0), (Matrix(2, 2) << 17.0,18.0,0.0,20.0).finished(),
    2, (Matrix(2, 2) << 21.0,22.0,23.0,24.0).finished(),
    4, (Matrix(2, 2) << 25.0,26.0,27.0,28.0).finished()));
  gbn += GaussianConditional::shared_ptr(new GaussianConditional(
    2, Vector2(29.0,30.0), (Matrix(2, 2) << 31.0,32.0,0.0,34.0).finished(),
    3, (Matrix(2, 2) << 35.0,36.0,37.0,38.0).finished()));
  gbn += GaussianConditional::shared_ptr(new GaussianConditional(
    3, Vector2(39.0,40.0), (Matrix(2, 2) << 41.0,42.0,0.0,44.0).finished(),
    4, (Matrix(2, 2) << 45.0,46.0,47.0,48.0).finished()));
  gbn += GaussianConditional::shared_ptr(new GaussianConditional(
    4, Vector2(49.0,50.0), (Matrix(2, 2) << 51.0,52.0,0.0,54.0).finished()));

  // Compute the Hessian numerically
  Matrix hessian = numericalHessian<Vector10>(
      boost::bind(&computeError, gbn, _1), Vector10::Zero());

  // Compute the gradient numerically
  Vector gradient = numericalGradient<Vector10>(
      boost::bind(&computeError, gbn, _1), Vector10::Zero());

  // Compute the gradient using dense matrices
  Matrix augmentedHessian = GaussianFactorGraph(gbn).augmentedHessian();
  LONGS_EQUAL(11, (long)augmentedHessian.cols());
  Vector denseMatrixGradient = -augmentedHessian.col(10).segment(0,10);
  EXPECT(assert_equal(gradient, denseMatrixGradient, 1e-5));

  // Compute the steepest descent point
  double step = -gradient.squaredNorm() / (gradient.transpose() * hessian * gradient)(0);
  Vector expected = gradient * step;

  // Compute the steepest descent point with the dogleg function
  VectorValues actual = gbn.optimizeGradientSearch();

  // Check that points agree
  FastVector<Key> keys = list_of(0)(1)(2)(3)(4);
  Vector actualAsVector = actual.vector(keys);
  EXPECT(assert_equal(expected, actualAsVector, 1e-5));

  // Check that point causes a decrease in error
  double origError = GaussianFactorGraph(gbn).error(VectorValues::Zero(actual));
  double newError = GaussianFactorGraph(gbn).error(actual);
  EXPECT(newError < origError);
}
开发者ID:exoter-rover,项目名称:slam-gtsam,代码行数:53,代码来源:testGaussianBayesNet.cpp


示例12: TEST

/* ************************************************************************* */
TEST( testLinearContainerFactor, jacobian_factor_withlinpoints ) {

  Matrix A1 = (Matrix(2, 2) <<
      2.74222, -0.0067457,
      0.0,  2.63624);
  Matrix A2 = (Matrix(2, 2) <<
      -0.0455167, -0.0443573,
      -0.0222154, -0.102489);
  Vector b = (Vector(2) << 0.0277052,
      -0.0533393);

  JacobianFactor expLinFactor(l1, A1, l2, A2, b, diag_model2);

  Values values;
  values.insert(l1, landmark1);
  values.insert(l2, landmark2);
  values.insert(x1, poseA1);
  values.insert(x2, poseA2);

  LinearContainerFactor actFactor(expLinFactor, values);
  LinearContainerFactor actFactorNolin(expLinFactor);

  EXPECT(assert_equal(actFactor, actFactor, tol));
  EXPECT(assert_inequal(actFactor, actFactorNolin, tol));
  EXPECT(assert_inequal(actFactorNolin, actFactor, tol));

  // Check contents
  Values expLinPoint;
  expLinPoint.insert(l1, landmark1);
  expLinPoint.insert(l2, landmark2);
  CHECK(actFactor.linearizationPoint());
  EXPECT(actFactor.hasLinearizationPoint());
  EXPECT(assert_equal(expLinPoint, *actFactor.linearizationPoint()));

  // Check error evaluation
  Vector delta_l1 = (Vector(2) << 1.0, 2.0);
  Vector delta_l2 = (Vector(2) << 3.0, 4.0);

  VectorValues delta = values.zeroVectors();
  delta.at(l1) = delta_l1;
  delta.at(l2) = delta_l2;
  Values noisyValues = values.retract(delta);
  double expError = expLinFactor.error(delta);
  EXPECT_DOUBLES_EQUAL(expError, actFactor.error(noisyValues), tol);
  EXPECT_DOUBLES_EQUAL(expLinFactor.error(values.zeroVectors()), actFactor.error(values), tol);

  // Check linearization with corrections for updated linearization point
  GaussianFactor::shared_ptr actLinearizationB = actFactor.linearize(noisyValues);
  Vector bprime = b - A1 * delta_l1 - A2 * delta_l2;
  JacobianFactor expLinFactor2(l1, A1, l2, A2, bprime, diag_model2);
  EXPECT(assert_equal(*expLinFactor2.clone(), *actLinearizationB, tol));
}
开发者ID:DForger,项目名称:gtsam,代码行数:53,代码来源:testLinearContainerFactor.cpp


示例13: DynamicValuesMismatched

 /* ************************************************************************* */
 VectorValues Values::localCoordinates(const Values& cp) const {
   if(this->size() != cp.size())
     throw DynamicValuesMismatched();
   VectorValues result;
   for(const_iterator it1=this->begin(), it2=cp.begin(); it1!=this->end(); ++it1, ++it2) {
     if(it1->key != it2->key)
       throw DynamicValuesMismatched(); // If keys do not match
     // Will throw a dynamic_cast exception if types do not match
     // NOTE: this is separate from localCoordinates(cp, ordering, result) due to at() vs. insert
     result.insert(it1->key, it1->value.localCoordinates_(it2->value));
   }
   return result;
 }
开发者ID:exoter-rover,项目名称:slam-gtsam,代码行数:14,代码来源:Values.cpp


示例14: TEST

/* ************************************************************************* */
TEST( SubgraphPreconditioner, planarGraph )
  {
  // Check planar graph construction
  GaussianFactorGraph A;
  VectorValues xtrue;
  boost::tie(A, xtrue) = planarGraph(3);
  LONGS_EQUAL(13,A.size());
  LONGS_EQUAL(9,xtrue.size());
  DOUBLES_EQUAL(0,error(A,xtrue),1e-9); // check zero error for xtrue

  // Check that xtrue is optimal
  GaussianBayesNet::shared_ptr R1 = GaussianSequentialSolver(A).eliminate();
  VectorValues actual = optimize(*R1);
  CHECK(assert_equal(xtrue,actual));
}
开发者ID:malcolmreynolds,项目名称:GTSAM,代码行数:16,代码来源:testSubgraphPreconditioner.cpp


示例15: retract

  /* ************************************************************************* */
  Values Values::retract(const VectorValues& delta) const
  {
    Values result;

    for(const_iterator key_value = begin(); key_value != end(); ++key_value) {
      VectorValues::const_iterator vector_item = delta.find(key_value->key);
      Key key = key_value->key;  // Non-const duplicate to deal with non-const insert argument
      if(vector_item != delta.end()) {
        const Vector& singleDelta = vector_item->second;
        Value* retractedValue(key_value->value.retract_(singleDelta)); // Retract
        result.values_.insert(key, retractedValue); // Add retracted result directly to result values
      } else {
        result.values_.insert(key, key_value->value.clone_()); // Add original version to result values
      }
    }

    return result;
  }
开发者ID:exoter-rover,项目名称:slam-gtsam,代码行数:19,代码来源:Values.cpp


示例16: TEST

/* ************************************************************************* */
TEST(HessianFactor, gradientAtZero)
{
  Matrix G11 = (Matrix(1, 1) << 1);
  Matrix G12 = (Matrix(1, 2) << 0, 0);
  Matrix G22 = (Matrix(2, 2) << 1, 0, 0, 1);
  Vector g1 = (Vector(1) << -7);
  Vector g2 = (Vector(2) << -8, -9);
  double f = 194;

  HessianFactor factor(0, 1, G11, G12, g1, G22, g2, f);

  // test gradient at zero
  VectorValues expectedG = pair_list_of<Key, Vector>(0, -g1) (1, -g2);
  Matrix A; Vector b; boost::tie(A,b) = factor.jacobian();
  FastVector<Key> keys; keys += 0,1;
  EXPECT(assert_equal(-A.transpose()*b, expectedG.vector(keys)));
  VectorValues actualG = factor.gradientAtZero();
  EXPECT(assert_equal(expectedG, actualG));
}
开发者ID:DForger,项目名称:gtsam,代码行数:20,代码来源:testHessianFactor.cpp


示例17: TEST

/* ************************************************************************* */
TEST(DoglegOptimizer, ComputeBlend) {
  // Create an arbitrary Bayes Net
  GaussianBayesNet gbn;
  gbn += GaussianConditional::shared_ptr(new GaussianConditional(
      0, Vector2(1.0,2.0), (Matrix(2, 2) << 3.0,4.0,0.0,6.0).finished(),
      3, (Matrix(2, 2) << 7.0,8.0,9.0,10.0).finished(),
      4, (Matrix(2, 2) << 11.0,12.0,13.0,14.0).finished()));
  gbn += GaussianConditional::shared_ptr(new GaussianConditional(
      1, Vector2(15.0,16.0), (Matrix(2, 2) << 17.0,18.0,0.0,20.0).finished(),
      2, (Matrix(2, 2) << 21.0,22.0,23.0,24.0).finished(),
      4, (Matrix(2, 2) << 25.0,26.0,27.0,28.0).finished()));
  gbn += GaussianConditional::shared_ptr(new GaussianConditional(
      2, Vector2(29.0,30.0), (Matrix(2, 2) << 31.0,32.0,0.0,34.0).finished(),
      3, (Matrix(2, 2) << 35.0,36.0,37.0,38.0).finished()));
  gbn += GaussianConditional::shared_ptr(new GaussianConditional(
      3, Vector2(39.0,40.0), (Matrix(2, 2) << 41.0,42.0,0.0,44.0).finished(),
      4, (Matrix(2, 2) << 45.0,46.0,47.0,48.0).finished()));
  gbn += GaussianConditional::shared_ptr(new GaussianConditional(
      4, Vector2(49.0,50.0), (Matrix(2, 2) << 51.0,52.0,0.0,54.0).finished()));

  // Compute steepest descent point
  VectorValues xu = gbn.optimizeGradientSearch();

  // Compute Newton's method point
  VectorValues xn = gbn.optimize();

  // The Newton's method point should be more "adventurous", i.e. larger, than the steepest descent point
  EXPECT(xu.vector().norm() < xn.vector().norm());

  // Compute blend
  double Delta = 1.5;
  VectorValues xb = DoglegOptimizerImpl::ComputeBlend(Delta, xu, xn);
  DOUBLES_EQUAL(Delta, xb.vector().norm(), 1e-10);
}
开发者ID:exoter-rover,项目名称:slam-gtsam,代码行数:35,代码来源:testDoglegOptimizer.cpp



注:本文中的VectorValues类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C++ VectorVariant类代码示例发布时间:2022-05-31
下一篇:
C++ VectorType类代码示例发布时间:2022-05-31
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap