本文整理汇总了C++中WellState类 的典型用法代码示例。如果您正苦于以下问题:C++ WellState类的具体用法?C++ WellState怎么用?C++ WellState使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了WellState类 的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。
示例1: restoreOPM_XWELKeyword
void restoreOPM_XWELKeyword(const std::string& restart_filename, int reportstep, bool unified, WellState& wellstate)
{
const char * keyword = "OPM_XWEL";
const char* filename = restart_filename.c_str();
ecl_file_type* file_type = ecl_file_open(filename, 0);
if (file_type != NULL) {
bool block_selected = unified ? ecl_file_select_rstblock_report_step(file_type , reportstep) : true;
if (block_selected) {
ecl_kw_type* xwel = ecl_file_iget_named_kw(file_type , keyword, 0);
const double* xwel_data = ecl_kw_get_double_ptr(xwel);
std::copy_n(xwel_data + wellstate.getRestartTemperatureOffset(), wellstate.temperature().size(), wellstate.temperature().begin());
std::copy_n(xwel_data + wellstate.getRestartBhpOffset(), wellstate.bhp().size(), wellstate.bhp().begin());
std::copy_n(xwel_data + wellstate.getRestartPerfPressOffset(), wellstate.perfPress().size(), wellstate.perfPress().begin());
std::copy_n(xwel_data + wellstate.getRestartPerfRatesOffset(), wellstate.perfRates().size(), wellstate.perfRates().begin());
std::copy_n(xwel_data + wellstate.getRestartWellRatesOffset(), wellstate.wellRates().size(), wellstate.wellRates().begin());
} else {
std::string error_str = "Restart file " + restart_filename + " does not contain data for report step " + std::to_string(reportstep) + "!\n";
throw std::runtime_error(error_str);
}
ecl_file_close(file_type);
} else {
std::string error_str = "Restart file " + restart_filename + " not found!\n";
throw std::runtime_error(error_str);
}
}
开发者ID:andlaus, 项目名称:opm-output, 代码行数:28, 代码来源:EclipseReader.cpp
示例2: solveIncomp
// Solve with no rock compressibility (linear eqn).
void IncompTpfa::solveIncomp(const double dt,
SimulatorState& state,
WellState& well_state)
{
// Set up properties.
computePerSolveDynamicData(dt, state, well_state);
// Assemble.
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
int ok = ifs_tpfa_assemble(gg, &forces_, &trans_[0], &gpress_omegaweighted_[0], h_);
if (!ok) {
OPM_THROW(std::runtime_error, "Failed assembling pressure system.");
}
// Solve.
linsolver_.solve(h_->A, h_->b, h_->x);
// Obtain solution.
assert(int(state.pressure().size()) == grid_.number_of_cells);
assert(int(state.faceflux().size()) == grid_.number_of_faces);
ifs_tpfa_solution soln = { NULL, NULL, NULL, NULL };
soln.cell_press = &state.pressure()[0];
soln.face_flux = &state.faceflux()[0];
if (wells_ != NULL) {
assert(int(well_state.bhp().size()) == wells_->number_of_wells);
assert(int(well_state.perfRates().size()) == wells_->well_connpos[ wells_->number_of_wells ]);
soln.well_flux = &well_state.perfRates()[0];
soln.well_press = &well_state.bhp()[0];
}
ifs_tpfa_press_flux(gg, &forces_, &trans_[0], h_, &soln);
}
开发者ID:jokva, 项目名称:opm-core, 代码行数:32, 代码来源:IncompTpfa.cpp
示例3:
void SimulatorBase<Implementation>::computeWellPotentials(const Wells* wells,
const BlackoilState& x,
const WellState& xw,
std::vector<double>& well_potentials)
{
const int nw = wells->number_of_wells;
const int np = wells->number_of_phases;
well_potentials.clear();
well_potentials.resize(nw*np,0.0);
for (int w = 0; w < nw; ++w) {
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
const double well_cell_pressure = x.pressure()[wells->well_cells[perf]];
const double drawdown_used = well_cell_pressure - xw.perfPress()[perf];
const WellControls* ctrl = wells->ctrls[w];
const int nwc = well_controls_get_num(ctrl);
//Loop over all controls until we find a BHP control
//that specifies what we need...
double bhp = 0.0;
for (int ctrl_index=0; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(ctrl, ctrl_index) == BHP) {
bhp = well_controls_iget_target(ctrl, ctrl_index);
}
// TODO: do something for thp;
}
// Calculate the pressure difference in the well perforation
const double dp = xw.perfPress()[perf] - xw.bhp()[w];
const double drawdown_maximum = well_cell_pressure - (bhp + dp);
for (int phase = 0; phase < np; ++phase) {
well_potentials[w*np + phase] += (drawdown_maximum / drawdown_used * xw.perfPhaseRates()[perf*np + phase]);
}
}
}
}
开发者ID:tanxiaosi, 项目名称:opm-simulators, 代码行数:35, 代码来源:SimulatorBase_impl.hpp
示例4: prepareStep
void
BlackoilMultiSegmentModel<Grid>::
prepareStep(const SimulatorTimerInterface& timer,
const ReservoirState& reservoir_state,
const WellState& well_state)
{
const double dt = timer.currentStepLength();
pvdt_ = geo_.poreVolume() / dt;
if (active_[Gas]) {
updatePrimalVariableFromState(reservoir_state);
}
const int nw = wellsMultiSegment().size();
if ( !msWellOps().has_multisegment_wells ) {
wellModel().segVDt() = V::Zero(nw);
return;
}
const int nseg_total = well_state.numSegments();
std::vector<double> segment_volume;
segment_volume.reserve(nseg_total);
for (int w = 0; w < nw; ++w) {
WellMultiSegmentConstPtr well = wellsMultiSegment()[w];
const std::vector<double>& segment_volume_well = well->segmentVolume();
segment_volume.insert(segment_volume.end(), segment_volume_well.begin(), segment_volume_well.end());
}
assert(int(segment_volume.size()) == nseg_total);
wellModel().segVDt() = Eigen::Map<V>(segment_volume.data(), nseg_total) / dt;
}
开发者ID:jokva, 项目名称:opm-simulators, 代码行数:30, 代码来源:BlackoilMultiSegmentModel_impl.hpp
示例5: writeTimeStepSerial
void
BlackoilOutputWriter::
writeTimeStepSerial(const SimulatorTimerInterface& timer,
const SimulationDataContainer& state,
const WellState& wellState,
const data::Solution& simProps,
bool substep)
{
// Matlab output
if( matlabWriter_ ) {
matlabWriter_->writeTimeStep( timer, state, wellState, substep );
}
// ECL output
if ( eclWriter_ )
{
const auto& initConfig = eclipseState_.getInitConfig();
if (initConfig.restartRequested() && ((initConfig.getRestartStep()) == (timer.currentStepNum()))) {
std::cout << "Skipping restart write in start of step " << timer.currentStepNum() << std::endl;
} else {
data::Solution combined_sol = simToSolution(state, phaseUsage_); // Get "normal" data (SWAT, PRESSURE, ...)
combined_sol.insert(simProps.begin(), simProps.end()); // ... insert "extra" data (KR, VISC, ...)
eclWriter_->writeTimeStep(timer.reportStepNum(),
substep,
timer.simulationTimeElapsed(),
combined_sol,
wellState.report(phaseUsage_));
}
}
// write backup file
if( backupfile_.is_open() )
{
int reportStep = timer.reportStepNum();
int currentTimeStep = timer.currentStepNum();
if( (reportStep == currentTimeStep || // true for SimulatorTimer
currentTimeStep == 0 || // true for AdaptiveSimulatorTimer at reportStep
timer.done() ) // true for AdaptiveSimulatorTimer at reportStep
&& lastBackupReportStep_ != reportStep ) // only backup report step once
{
// store report step
lastBackupReportStep_ = reportStep;
// write resport step number
backupfile_.write( (const char *) &reportStep, sizeof(int) );
try {
backupfile_ << state;
const WellStateFullyImplicitBlackoil& boWellState = static_cast< const WellStateFullyImplicitBlackoil& > (wellState);
backupfile_ << boWellState;
}
catch ( const std::bad_cast& e )
{
}
backupfile_ << std::flush;
}
} // end backup
}
开发者ID:, 项目名称:, 代码行数:59, 代码来源:
示例6: computeTransportSource
/// Compute two-phase transport source terms from well terms.
/// Note: Unlike the incompressible version of this function,
/// this version computes surface volume injection rates,
/// production rates are still total reservoir volumes.
/// \param[in] props Fluid and rock properties.
/// \param[in] wells Wells data structure.
/// \param[in] well_state Well pressures and fluxes.
/// \param[out] transport_src The transport source terms. They are to be interpreted depending on sign:
/// (+) positive inflow of first (water) phase (surface volume),
/// (-) negative total outflow of both phases (reservoir volume).
void computeTransportSource(const BlackoilPropertiesInterface& props,
const Wells* wells,
const WellState& well_state,
std::vector<double>& transport_src)
{
int nc = props.numCells();
transport_src.clear();
transport_src.resize(nc, 0.0);
// Well contributions.
if (wells) {
const int nw = wells->number_of_wells;
const int np = wells->number_of_phases;
if (np != 2) {
OPM_THROW(std::runtime_error, "computeTransportSource() requires a 2 phase case.");
}
std::vector<double> A(np*np);
for (int w = 0; w < nw; ++w) {
const double* comp_frac = wells->comp_frac + np*w;
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
const int perf_cell = wells->well_cells[perf];
double perf_rate = well_state.perfRates()[perf];
if (perf_rate > 0.0) {
// perf_rate is a total inflow reservoir rate, we want a surface water rate.
if (wells->type[w] != INJECTOR) {
std::cout << "**** Warning: crossflow in well "
<< w << " perf " << perf - wells->well_connpos[w]
<< " ignored. Reservoir rate was "
<< perf_rate/Opm::unit::day << " m^3/day." << std::endl;
perf_rate = 0.0;
} else {
assert(std::fabs(comp_frac[0] + comp_frac[1] - 1.0) < 1e-6);
perf_rate *= comp_frac[0]; // Water reservoir volume rate.
props.matrix(1, &well_state.perfPress()[perf], comp_frac, &perf_cell, &A[0], 0);
perf_rate *= A[0]; // Water surface volume rate.
}
}
transport_src[perf_cell] += perf_rate;
}
}
}
}
开发者ID:PETECLAM, 项目名称:opm-core, 代码行数:51, 代码来源:miscUtilitiesBlackoil.cpp
示例7: assemble
SimulatorReport
assemble(const ReservoirState& reservoir_state,
WellState& well_state,
const bool initial_assembly)
{
SimulatorReport report;
report += Base::assemble(reservoir_state, well_state, initial_assembly);
if (initial_assembly) {
}
// Compute pressure residual.
ADB pressure_residual = ADB::constant(V::Zero(residual_.material_balance_eq[0].size()));
for (int phase = 0; phase < numPhases(); ++phase) {
pressure_residual += residual_.material_balance_eq[phase] * scaling_[phase];
}
residual_.material_balance_eq[0] = pressure_residual; // HACK
// Compute total reservoir volume flux.
const int n = sd_.rq[0].mflux.size();
V flux = V::Zero(n);
for (int phase = 0; phase < numPhases(); ++phase) {
UpwindSelector<double> upwind(grid_, ops_, sd_.rq[phase].dh.value());
flux += sd_.rq[phase].mflux.value() / upwind.select(sd_.rq[phase].b.value());
}
// Storing the fluxes in the assemble() method is a bit of
// a hack, but alternatives either require a more
// significant redesign of the base class or are
// inefficient.
ReservoirState& s = const_cast<ReservoirState&>(reservoir_state);
s.faceflux().resize(n);
std::copy_n(flux.data(), n, s.faceflux().begin());
if (asImpl().localWellsActive()) {
const V& wflux = asImpl().wellModel().getStoredWellPerforationFluxes();
assert(int(well_state.perfRates().size()) == wflux.size());
std::copy_n(wflux.data(), wflux.size(), well_state.perfRates().begin());
}
return report;
}
开发者ID:, 项目名称:, 代码行数:41, 代码来源:
示例8: computePerIterationDynamicData
/// Compute per-iteration dynamic properties.
void IncompTpfa::computePerIterationDynamicData(const double /*dt*/,
const SimulatorState& state,
const WellState& well_state)
{
// These are the variables that get computed by this function:
//
// std::vector<double> porevol_
// std::vector<double> rock_comp_
// std::vector<double> pressures_
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol_);
if (rock_comp_props_ && rock_comp_props_->isActive()) {
for (int cell = 0; cell < grid_.number_of_cells; ++cell) {
rock_comp_[cell] = rock_comp_props_->rockComp(state.pressure()[cell]);
}
}
if (wells_) {
std::copy(state.pressure().begin(), state.pressure().end(), pressures_.begin());
std::copy(well_state.bhp().begin(), well_state.bhp().end(), pressures_.begin() + grid_.number_of_cells);
}
}
开发者ID:jokva, 项目名称:opm-core, 代码行数:22, 代码来源:IncompTpfa.cpp
示例9: computeResults
/// Compute the output.
void IncompTpfa::computeResults(SimulatorState& state,
WellState& well_state) const
{
// Make sure h_ contains the direct-solution matrix
// and right hand side (not jacobian and residual).
// TODO: optimize by only adjusting b and diagonal of A.
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
ifs_tpfa_assemble(gg, &forces_, &trans_[0], &gpress_omegaweighted_[0], h_);
// Make sure h_->x contains the direct solution vector.
assert(int(state.pressure().size()) == grid_.number_of_cells);
assert(int(state.faceflux().size()) == grid_.number_of_faces);
std::copy(state.pressure().begin(), state.pressure().end(), h_->x);
std::copy(well_state.bhp().begin(), well_state.bhp().end(), h_->x + grid_.number_of_cells);
// Obtain solution.
ifs_tpfa_solution soln = { NULL, NULL, NULL, NULL };
soln.cell_press = &state.pressure()[0];
soln.face_flux = &state.faceflux()[0];
if (wells_ != NULL) {
assert(int(well_state.bhp().size()) == wells_->number_of_wells);
assert(int(well_state.perfRates().size()) == wells_->well_connpos[ wells_->number_of_wells ]);
soln.well_flux = &well_state.perfRates()[0];
soln.well_press = &well_state.bhp()[0];
}
ifs_tpfa_press_flux(gg, &forces_, &trans_[0], h_, &soln); // TODO: Check what parts of h_ are used here.
}
开发者ID:jokva, 项目名称:opm-core, 代码行数:29, 代码来源:IncompTpfa.cpp
示例10: assemble
/// Compute the residual and Jacobian.
void CompressibleTpfa::assemble(const double dt,
const BlackoilState& state,
const WellState& well_state)
{
const double* cell_press = &state.pressure()[0];
const double* well_bhp = well_state.bhp().empty() ? NULL : &well_state.bhp()[0];
const double* z = &state.surfacevol()[0];
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
CompletionData completion_data;
completion_data.wdp = ! wellperf_wdp_.empty() ? &wellperf_wdp_[0] : 0;
completion_data.A = ! wellperf_A_.empty() ? &wellperf_A_[0] : 0;
completion_data.phasemob = ! wellperf_phasemob_.empty() ? &wellperf_phasemob_[0] : 0;
cfs_tpfa_res_wells wells_tmp;
wells_tmp.W = const_cast<Wells*>(wells_);
wells_tmp.data = &completion_data;
cfs_tpfa_res_forces forces;
forces.wells = &wells_tmp;
forces.src = NULL; // Check if it is legal to leave it as NULL.
compr_quantities_gen cq;
cq.nphases = props_.numPhases();
cq.Ac = &cell_A_[0];
cq.dAc = &cell_dA_[0];
cq.Af = &face_A_[0];
cq.phasemobf = &face_phasemob_[0];
cq.voldiscr = &cell_voldisc_[0];
int was_adjusted = 0;
if (! (rock_comp_props_ && rock_comp_props_->isActive())) {
was_adjusted =
cfs_tpfa_res_assemble(gg, dt, &forces, z, &cq, &trans_[0],
&face_gravcap_[0], cell_press, well_bhp,
&porevol_[0], h_);
} else {
was_adjusted =
cfs_tpfa_res_comprock_assemble(gg, dt, &forces, z, &cq, &trans_[0],
&face_gravcap_[0], cell_press, well_bhp,
&porevol_[0], &initial_porevol_[0],
&rock_comp_[0], h_);
}
singular_ = (was_adjusted == 1);
}
开发者ID:PETECLAM, 项目名称:opm-core, 代码行数:41, 代码来源:CompressibleTpfa.cpp
示例11: numPhases
IterationReport
BlackoilMultiSegmentModel<Grid>::solveWellEq(const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
SolutionState& state,
WellState& well_state)
{
IterationReport iter_report = Base::solveWellEq(mob_perfcells, b_perfcells, state, well_state);
if (iter_report.converged) {
// We must now update the state.segp and state.segqs members,
// that the base version does not know about.
const int np = numPhases();
const int nseg_total =well_state.numSegments();
{
// We will set the segp primary variable to the new ones,
// but we do not change the derivatives here.
ADB::V new_segp = Eigen::Map<ADB::V>(well_state.segPress().data(), nseg_total);
// Avoiding the copy below would require a value setter method
// in AutoDiffBlock.
std::vector<ADB::M> old_segp_derivs = state.segp.derivative();
state.segp = ADB::function(std::move(new_segp), std::move(old_segp_derivs));
}
{
// Need to reshuffle well rates, from phase running fastest
// to wells running fastest.
// The transpose() below switches the ordering.
const DataBlock segrates = Eigen::Map<const DataBlock>(well_state.segPhaseRates().data(), nseg_total, np).transpose();
ADB::V new_segqs = Eigen::Map<const V>(segrates.data(), nseg_total * np);
std::vector<ADB::M> old_segqs_derivs = state.segqs.derivative();
state.segqs = ADB::function(std::move(new_segqs), std::move(old_segqs_derivs));
}
// This is also called by the base version, but since we have updated
// state.segp we must call it again.
asImpl().computeWellConnectionPressures(state, well_state);
}
return iter_report;
}
开发者ID:jokva, 项目名称:opm-simulators, 代码行数:39, 代码来源:BlackoilMultiSegmentModel_impl.hpp
示例12: computeWellDynamicData
/// Compute per-iteration dynamic properties for wells.
void CompressibleTpfa::computeWellDynamicData(const double /*dt*/,
const BlackoilState& /*state*/,
const WellState& well_state)
{
// These are the variables that get computed by this function:
//
// std::vector<double> wellperf_A_;
// std::vector<double> wellperf_phasemob_;
const int np = props_.numPhases();
const int nw = (wells_ != 0) ? wells_->number_of_wells : 0;
const int nperf = (wells_ != 0) ? wells_->well_connpos[nw] : 0;
wellperf_A_.resize(nperf*np*np);
wellperf_phasemob_.resize(nperf*np);
// The A matrix is set equal to the perforation grid cells'
// matrix for producers, computed from bhp and injection
// component fractions from
// The mobilities are set equal to the perforation grid cells'
// mobilities for producers.
std::vector<double> mu(np);
for (int w = 0; w < nw; ++w) {
bool producer = (wells_->type[w] == PRODUCER);
const double* comp_frac = &wells_->comp_frac[np*w];
for (int j = wells_->well_connpos[w]; j < wells_->well_connpos[w+1]; ++j) {
const int c = wells_->well_cells[j];
double* wpA = &wellperf_A_[np*np*j];
double* wpM = &wellperf_phasemob_[np*j];
if (producer) {
const double* cA = &cell_A_[np*np*c];
std::copy(cA, cA + np*np, wpA);
const double* cM = &cell_phasemob_[np*c];
std::copy(cM, cM + np, wpM);
} else {
const double bhp = well_state.bhp()[w];
double perf_p = bhp + wellperf_wdp_[j];
// Hack warning: comp_frac is used as a component
// surface-volume variable in calls to matrix() and
// viscosity(), but as a saturation in the call to
// relperm(). This is probably ok as long as injectors
// only inject pure fluids.
props_.matrix(1, &perf_p, comp_frac, &c, wpA, NULL);
props_.viscosity(1, &perf_p, comp_frac, &c, &mu[0], NULL);
assert(std::fabs(std::accumulate(comp_frac, comp_frac + np, 0.0) - 1.0) < 1e-6);
props_.relperm (1, comp_frac, &c, wpM , NULL);
for (int phase = 0; phase < np; ++phase) {
wpM[phase] /= mu[phase];
}
}
}
}
}
开发者ID:PETECLAM, 项目名称:opm-core, 代码行数:51, 代码来源:CompressibleTpfa.cpp
示例13:
void SimulatorBase<Implementation>::computeWellPotentials(const Wells* wells,
const WellState& xw,
std::vector<double>& well_potentials)
{
const int nw = wells->number_of_wells;
const int np = wells->number_of_phases;
well_potentials.clear();
well_potentials.resize(nw*np,0.0);
for (int w = 0; w < nw; ++w) {
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
for (int phase = 0; phase < np; ++phase) {
well_potentials[w*np + phase] += xw.wellPotentials()[perf*np + phase];
}
}
}
}
开发者ID:, 项目名称:, 代码行数:16, 代码来源:
示例14: computeResults
/// Compute the output.
void CompressibleTpfa::computeResults(BlackoilState& state,
WellState& well_state) const
{
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
CompletionData completion_data;
completion_data.wdp = ! wellperf_wdp_.empty() ? const_cast<double*>(&wellperf_wdp_[0]) : 0;
completion_data.A = ! wellperf_A_.empty() ? const_cast<double*>(&wellperf_A_[0]) : 0;
completion_data.phasemob = ! wellperf_phasemob_.empty() ? const_cast<double*>(&wellperf_phasemob_[0]) : 0;
cfs_tpfa_res_wells wells_tmp;
wells_tmp.W = const_cast<Wells*>(wells_);
wells_tmp.data = &completion_data;
cfs_tpfa_res_forces forces;
forces.wells = &wells_tmp;
forces.src = NULL;
double* wpress = ! well_state.bhp ().empty() ? & well_state.bhp ()[0] : 0;
double* wflux = ! well_state.perfRates().empty() ? & well_state.perfRates()[0] : 0;
cfs_tpfa_res_flux(gg,
&forces,
props_.numPhases(),
&trans_[0],
&cell_phasemob_[0],
&face_phasemob_[0],
&face_gravcap_[0],
&state.pressure()[0],
wpress,
&state.faceflux()[0],
wflux);
cfs_tpfa_res_fpress(gg,
props_.numPhases(),
&htrans_[0],
&face_phasemob_[0],
&face_gravcap_[0],
h_,
&state.pressure()[0],
&state.faceflux()[0],
&state.facepressure()[0]);
// Compute well perforation pressures (not done by the C code).
if (wells_ != 0) {
const int nw = wells_->number_of_wells;
for (int w = 0; w < nw; ++w) {
for (int j = wells_->well_connpos[w]; j < wells_->well_connpos[w+1]; ++j) {
const double bhp = well_state.bhp()[w];
well_state.perfPress()[j] = bhp + wellperf_wdp_[j];
}
}
}
}
开发者ID:PETECLAM, 项目名称:opm-core, 代码行数:51, 代码来源:CompressibleTpfa.cpp
示例15: distr
void SimulatorBase<Implementation>::computeRESV(const std::size_t step,
const Wells* wells,
const BlackoilState& x,
WellState& xw)
{
typedef SimFIBODetails::WellMap WellMap;
const std::vector<WellConstPtr>& w_ecl = eclipse_state_->getSchedule()->getWells(step);
const WellMap& wmap = SimFIBODetails::mapWells(w_ecl);
const std::vector<int>& resv_wells = SimFIBODetails::resvWells(wells, step, wmap);
const std::size_t number_resv_wells = resv_wells.size();
std::size_t global_number_resv_wells = number_resv_wells;
#if HAVE_MPI
if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const auto& info =
boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation());
global_number_resv_wells = info.communicator().sum(global_number_resv_wells);
if ( global_number_resv_wells )
{
// At least one process has resv wells. Therefore rate converter needs
// to calculate averages over regions that might cross process
// borders. This needs to be done by all processes and therefore
// outside of the next if statement.
rateConverter_.defineState(x, boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation()));
}
}
else
#endif
{
if ( global_number_resv_wells )
{
rateConverter_.defineState(x);
}
}
if (! resv_wells.empty()) {
const PhaseUsage& pu = props_.phaseUsage();
const std::vector<double>::size_type np = props_.numPhases();
std::vector<double> distr (np);
std::vector<double> hrates(np);
std::vector<double> prates(np);
for (std::vector<int>::const_iterator
rp = resv_wells.begin(), e = resv_wells.end();
rp != e; ++rp)
{
WellControls* ctrl = wells->ctrls[*rp];
const bool is_producer = wells->type[*rp] == PRODUCER;
// RESV control mode, all wells
{
const int rctrl = SimFIBODetails::resv_control(ctrl);
if (0 <= rctrl) {
const std::vector<double>::size_type off = (*rp) * np;
if (is_producer) {
// Convert to positive rates to avoid issues
// in coefficient calculations.
std::transform(xw.wellRates().begin() + (off + 0*np),
xw.wellRates().begin() + (off + 1*np),
prates.begin(), std::negate<double>());
} else {
std::copy(xw.wellRates().begin() + (off + 0*np),
xw.wellRates().begin() + (off + 1*np),
prates.begin());
}
const int fipreg = 0; // Hack. Ignore FIP regions.
rateConverter_.calcCoeff(prates, fipreg, distr);
well_controls_iset_distr(ctrl, rctrl, & distr[0]);
}
}
// RESV control, WCONHIST wells. A bit of duplicate
// work, regrettably.
if (is_producer && wells->name[*rp] != 0) {
WellMap::const_iterator i = wmap.find(wells->name[*rp]);
if (i != wmap.end()) {
WellConstPtr wp = i->second;
const WellProductionProperties& p =
wp->getProductionProperties(step);
if (! p.predictionMode) {
// History matching (WCONHIST/RESV)
SimFIBODetails::historyRates(pu, p, hrates);
const int fipreg = 0; // Hack. Ignore FIP regions.
rateConverter_.calcCoeff(hrates, fipreg, distr);
// WCONHIST/RESV target is sum of all
// observed phase rates translated to
// reservoir conditions. Recall sign
//.........这里部分代码省略.........
开发者ID:, 项目名称:, 代码行数:101, 代码来源:
示例16: computePropertiesForWellConnectionPressures
void
StandardWellsSolvent::
computePropertiesForWellConnectionPressures(const SolutionState& state,
const WellState& xw,
std::vector<double>& b_perf,
std::vector<double>& rsmax_perf,
std::vector<double>& rvmax_perf,
std::vector<double>& surf_dens_perf)
{
// 1. Compute properties required by computeConnectionPressureDelta().
// Note that some of the complexity of this part is due to the function
// taking std::vector<double> arguments, and not Eigen objects.
const int nperf = wells().well_connpos[wells().number_of_wells];
const int nw = wells().number_of_wells;
// Compute the average pressure in each well block
const Vector perf_press = Eigen::Map<const V>(xw.perfPress().data(), nperf);
Vector avg_press = perf_press*0;
for (int w = 0; w < nw; ++w) {
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) {
const double p_above = perf == wells().well_connpos[w] ? state.bhp.value()[w] : perf_press[perf - 1];
const double p_avg = (perf_press[perf] + p_above)/2;
avg_press[perf] = p_avg;
}
}
const std::vector<int>& well_cells = wellOps().well_cells;
// Use cell values for the temperature as the wells don't knows its temperature yet.
const ADB perf_temp = subset(state.temperature, well_cells);
// Compute b, rsmax, rvmax values for perforations.
// Evaluate the properties using average well block pressures
// and cell values for rs, rv, phase condition and temperature.
const ADB avg_press_ad = ADB::constant(avg_press);
std::vector<PhasePresence> perf_cond(nperf);
for (int perf = 0; perf < nperf; ++perf) {
perf_cond[perf] = (*phase_condition_)[well_cells[perf]];
}
const PhaseUsage& pu = fluid_->phaseUsage();
DataBlock b(nperf, pu.num_phases);
const Vector bw = fluid_->bWat(avg_press_ad, perf_temp, well_cells).value();
if (pu.phase_used[BlackoilPhases::Aqua]) {
b.col(pu.phase_pos[BlackoilPhases::Aqua]) = bw;
}
assert((*active_)[Oil]);
assert((*active_)[Gas]);
const ADB perf_rv = subset(state.rv, well_cells);
const ADB perf_rs = subset(state.rs, well_cells);
const Vector perf_so = subset(state.saturation[pu.phase_pos[Oil]].value(), well_cells);
if (pu.phase_used[BlackoilPhases::Liquid]) {
const Vector bo = fluid_->bOil(avg_press_ad, perf_temp, perf_rs, perf_cond, well_cells).value();
//const V bo_eff = subset(rq_[pu.phase_pos[Oil] ].b , well_cells).value();
b.col(pu.phase_pos[BlackoilPhases::Liquid]) = bo;
// const Vector rssat = fluidRsSat(avg_press, perf_so, well_cells);
const Vector rssat = fluid_->rsSat(ADB::constant(avg_press), ADB::constant(perf_so), well_cells).value();
rsmax_perf.assign(rssat.data(), rssat.data() + nperf);
} else {
rsmax_perf.assign(0.0, nperf);
}
V surf_dens_copy = superset(fluid_->surfaceDensity(0, well_cells), Span(nperf, pu.num_phases, 0), nperf*pu.num_phases);
for (int phase = 1; phase < pu.num_phases; ++phase) {
if ( phase == pu.phase_pos[BlackoilPhases::Vapour]) {
continue; // the gas surface density is added after the solvent is accounted for.
}
surf_dens_copy += superset(fluid_->surfaceDensity(phase, well_cells), Span(nperf, pu.num_phases, phase), nperf*pu.num_phases);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
// Unclear wether the effective or the pure values should be used for the wells
// the current usage of unmodified properties values gives best match.
//V bg_eff = subset(rq_[pu.phase_pos[Gas]].b,well_cells).value();
Vector bg = fluid_->bGas(avg_press_ad, perf_temp, perf_rv, perf_cond, well_cells).value();
Vector rhog = fluid_->surfaceDensity(pu.phase_pos[BlackoilPhases::Vapour], well_cells);
// to handle solvent related
if (has_solvent_) {
const Vector bs = solvent_props_->bSolvent(avg_press_ad,well_cells).value();
//const V bs_eff = subset(rq_[solvent_pos_].b,well_cells).value();
// number of cells
const int nc = state.pressure.size();
const ADB zero = ADB::constant(Vector::Zero(nc));
const ADB& ss = state.solvent_saturation;
const ADB& sg = ((*active_)[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
Selector<double> zero_selector(ss.value() + sg.value(), Selector<double>::Zero);
Vector F_solvent = subset(zero_selector.select(ss, ss / (ss + sg)),well_cells).value();
Vector injectedSolventFraction = Eigen::Map<const Vector>(&xw.solventFraction()[0], nperf);
Vector isProducer = Vector::Zero(nperf);
Vector ones = Vector::Constant(nperf,1.0);
for (int w = 0; w < nw; ++w) {
//.........这里部分代码省略.........
开发者ID:jokva, 项目名称:opm-simulators, 代码行数:101, 代码来源:StandardWellsSolvent_impl.hpp
示例17: solve
/// Solve pressure equation, by Newton iterations.
void CompressibleTpfa::solve(const double dt,
BlackoilState& state,
WellState& well_state)
{
const int nc = grid_.number_of_cells;
const int nw = (wells_ != 0) ? wells_->number_of_wells : 0;
// Set up dynamic data.
computePerSolveDynamicData(dt, state, well_state);
computePerIterationDynamicData(dt, state, well_state);
// Assemble J and F.
assemble(dt, state, well_state);
double inc_norm = 0.0;
int iter = 0;
double res_norm = residualNorm();
std::cout << "\nIteration Residual Change in p\n"
<< std::setw(9) << iter
<< std::setw(18) << res_norm
<< std::setw(18) << '*' << std::endl;
while ((iter < maxiter_) && (res_norm > residual_tol_)) {
// Solve for increment in Newton method:
// incr = x_{n+1} - x_{n} = -J^{-1}F
// (J is Jacobian matrix, F is residual)
solveIncrement();
++iter;
// Update pressure vars with increment.
for (int c = 0; c < nc; ++c) {
state.pressure()[c] += pressure_increment_[c];
}
for (int w = 0; w < nw; ++w) {
well_state.bhp()[w] += pressure_increment_[nc + w];
}
// Stop iterating if increment is small.
inc_norm = incrementNorm();
if (inc_norm <= change_tol_) {
std::cout << std::setw(9) << iter
<< std::setw(18) << '*'
<< std::setw(18) << inc_norm << std::endl;
break;
}
// Set up dynamic data.
computePerIterationDynamicData(dt, state, well_state);
// Assemble J and F.
assemble(dt, state, well_state);
// Update residual norm.
res_norm = residualNorm();
std::cout << std::setw(9) << iter
<< std::setw(18) << res_norm
<< std::setw(18) << inc_norm << std::endl;
}
if ((iter == maxiter_) && (res_norm > residual_tol_) && (inc_norm > change_tol_)) {
OPM_THROW(std::runtime_error, "CompressibleTpfa::solve() failed to converge in " << maxiter_ << " iterations.");
}
std::cout << "Solved pressure in " << iter << " iterations." << std::endl;
// Compute fluxes and face pressures.
computeResults(state, well_state);
}
开发者ID:PETECLAM, 项目名称:opm-core, 代码行数:69, 代码来源:CompressibleTpfa.cpp
六六分期app的软件客服如何联系?不知道吗?加qq群【895510560】即可!标题:六六分期
阅读:18253| 2023-10-27
今天小编告诉大家如何处理win10系统火狐flash插件总是崩溃的问题,可能很多用户都不知
阅读:9671| 2022-11-06
今天小编告诉大家如何对win10系统删除桌面回收站图标进行设置,可能很多用户都不知道
阅读:8175| 2022-11-06
今天小编告诉大家如何对win10系统电脑设置节能降温的设置方法,想必大家都遇到过需要
阅读:8547| 2022-11-06
我们在使用xp系统的过程中,经常需要对xp系统无线网络安装向导设置进行设置,可能很多
阅读:8455| 2022-11-06
今天小编告诉大家如何处理win7系统玩cf老是与主机连接不稳定的问题,可能很多用户都不
阅读:9387| 2022-11-06
电脑对日常生活的重要性小编就不多说了,可是一旦碰到win7系统设置cf烟雾头的问题,很
阅读:8427| 2022-11-06
我们在日常使用电脑的时候,有的小伙伴们可能在打开应用的时候会遇见提示应用程序无法
阅读:7859| 2022-11-06
今天小编告诉大家如何对win7系统打开vcf文件进行设置,可能很多用户都不知道怎么对win
阅读:8410| 2022-11-06
今天小编告诉大家如何对win10系统s4开启USB调试模式进行设置,可能很多用户都不知道怎
阅读:7394| 2022-11-06
请发表评论