• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

C++ dd_real类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C++中dd_real的典型用法代码示例。如果您正苦于以下问题:C++ dd_real类的具体用法?C++ dd_real怎么用?C++ dd_real使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了dd_real类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。

示例1: exp

/* Exponential.  Computes exp(x) in double-double precision. */
dd_real exp(const dd_real &a) {
  /* Strategy:  We first reduce the size of x by noting that

          exp(kr + m * log(2)) = 2^m * exp(r)^k

     where m and k are integers.  By choosing m appropriately
     we can make |kr| <= log(2) / 2 = 0.347.  Then exp(r) is
     evaluated using the familiar Taylor series.  Reducing the
     argument substantially speeds up the convergence.       */

  const double k = 512.0;
  const double inv_k = 1.0 / k;

  if (a.x[0] <= -709.0)
    return 0.0;

  if (a.x[0] >=  709.0)
    return dd_real::_inf;

  if (a.is_zero())
    return 1.0;

  if (a.is_one())
    return dd_real::_e;

  double m = std::floor(a.x[0] / dd_real::_log2.x[0] + 0.5);
  dd_real r = mul_pwr2(a - dd_real::_log2 * m, inv_k);
  dd_real s, t, p;

  p = sqr(r);
  s = r + mul_pwr2(p, 0.5);
  p *= r;
  t = p * dd_real(inv_fact[0][0], inv_fact[0][1]);
  int i = 0;
  do {
    s += t;
    p *= r;
    ++i;
    t = p * dd_real(inv_fact[i][0], inv_fact[i][1]);
  } while (std::abs(to_double(t)) > inv_k * dd_real::_eps && i < 5);

  s += t;

  s = mul_pwr2(s, 2.0) + sqr(s);
  s = mul_pwr2(s, 2.0) + sqr(s);
  s = mul_pwr2(s, 2.0) + sqr(s);
  s = mul_pwr2(s, 2.0) + sqr(s);
  s = mul_pwr2(s, 2.0) + sqr(s);
  s = mul_pwr2(s, 2.0) + sqr(s);
  s = mul_pwr2(s, 2.0) + sqr(s);
  s = mul_pwr2(s, 2.0) + sqr(s);
  s = mul_pwr2(s, 2.0) + sqr(s);
  s += 1.0;

  return ldexp(s, static_cast<int>(m));
}
开发者ID:astrofrog,项目名称:sphere,代码行数:57,代码来源:dd_real.cpp


示例2: exp

/* Exponential.  Computes exp(x) in double-double precision. */
dd_real exp(const dd_real &a) {
  /* Strategy:  We first reduce the size of x by noting that
     
          exp(kr + m) = exp(m) * exp(r)^k

     Thus by choosing m to be a multiple of log(2) closest
     to x, we can make |kr| <= log(2) / 2 = 0.3466.  Now
     we can set k = 64, so that |r| <= 0.000542.  Then

          exp(x) = exp(kr + s log 2) = (2^s) * [exp(r)]^64

     Then exp(r) is evaluated using the familiar Taylor series.
     Reducing the argument substantially speeds up the convergence.
  */  

  const int k = 64;

  if (a.hi <= -709.0)
    return 0.0;

  if (a.hi >=  709.0)
    return dd_real::_inf;

  if (a.is_zero()) {
    return 1.0;
  }

  if (a.is_one()) {
    return dd_real::_e;
  }

  int z = to_int(nint(a / dd_real::_log2));
  dd_real r = (a - dd_real::_log2 * static_cast<double>(z)) / static_cast<double>(k);
  dd_real s, t, f, p;
  double m;

  s = 1.0 + r;
  p = sqr(r);
  m = 2.0;
  f = 2.0;
  t = p / f;
  do {
    s += t;
    p *= r;
    m += 1.0;
    f *= m;
    t = p / f;
  } while (std::abs(to_double(t)) > 1.0e-35);

  s += t;
  r = pow(s, k);
  r = mul_pwr2(r, std::ldexp(1.0, z));

  return r;
}
开发者ID:zhugeyicixin,项目名称:Mesmer3.0,代码行数:56,代码来源:dd_real.cpp


示例3: sincos_taylor

/* Computes sin(a) and cos(a) using Taylor series.
   Assumes |a| <= pi/32.                           */
static void sincos_taylor(const dd_real &a, 
                          dd_real &sin_a, dd_real &cos_a) {
  const double thresh = 1.0e-35 * std::abs(to_double(a));
  dd_real t;  /* Term being added. */
  dd_real s;  /* Current partial sum. */
  dd_real x;  /* = -sqr(a) */
  double m;

  if (a.is_zero()) {
    sin_a = 0.0;
    cos_a = 1.0;
    return;
  }

  x = -sqr(a);
  s = a;
  t = a;
  m = 1.0;
  do {
    m += 2.0;
    t *= x;
    t /= (m*(m-1.0));
    s += t;
  } while (std::abs(to_double(t)) > thresh);

  sin_a = s;
  cos_a = sqrt(1.0 - sqr(s));
}
开发者ID:zhugeyicixin,项目名称:Mesmer3.0,代码行数:30,代码来源:dd_real.cpp


示例4: logarithm

/* Logarithm.  Computes log(x) in double-double precision.
   This is a natural logarithm (i.e., base e).            */
dd_real log(const dd_real &a) {
  /* Strategy.  The Taylor series for log converges much more
     slowly than that of exp, due to the lack of the factorial
     term in the denominator.  Hence this routine instead tries
     to determine the root of the function

         f(x) = exp(x) - a

     using Newton iteration.  The iteration is given by

         x' = x - f(x)/f'(x) 
            = x - (1 - a * exp(-x))
            = x + a * exp(-x) - 1.
           
     Only one iteration is needed, since Newton's iteration
     approximately doubles the number of digits per iteration. */

  if (a.is_one()) {
    return 0.0;
  }

  if (a.hi <= 0.0) {
    dd_real::abort("(dd_real::log): Non-positive argument.");
    return dd_real::_nan;
  }

  dd_real x = std::log(a.hi);   /* Initial approximation */

  x = x + a * exp(-x) - 1.0;
  return x;
}
开发者ID:zhugeyicixin,项目名称:Mesmer3.0,代码行数:33,代码来源:dd_real.cpp


示例5: npwr

/* Computes the n-th power of a double-double number. 
   NOTE:  0^0 causes an error.                         */
dd_real npwr(const dd_real &a, int n) {
  
  if (n == 0) {
    if (a.is_zero()) {
      dd_real::abort("(dd_real::npwr): Invalid argument.");
      return dd_real::_nan;
    }
    return 1.0;
  }

  dd_real r = a;
  dd_real s = 1.0;
  int N = std::abs(n);

  if (N > 1) {
    /* Use binary exponentiation */
    while (N > 0) {
      if (N % 2 == 1) {
        s *= r;
      }
      N /= 2;
      if (N > 0)
        r = sqr(r);
    }
  } else {
    s = r;
  }

  /* Compute the reciprocal if n is negative. */
  if (n < 0)
    return (1.0 / s);
  
  return s;
}
开发者ID:zhugeyicixin,项目名称:Mesmer3.0,代码行数:36,代码来源:dd_real.cpp


示例6: sinh

dd_real sinh(const dd_real &a) {
  if (a.is_zero()) {
    return 0.0;
  }

  if (abs(a) > 0.05) {
    dd_real ea = exp(a);
    return mul_pwr2(ea - inv(ea), 0.5);
  }

  /* since a is small, using the above formula gives
     a lot of cancellation.  So use Taylor series.   */
  dd_real s = a;
  dd_real t = a;
  dd_real r = sqr(t);
  double m = 1.0;
  double thresh = std::abs((to_double(a)) * dd_real::_eps);

  do {
    m += 2.0;
    t *= r;
    t /= (m-1) * m;

    s += t;
  } while (abs(t) > thresh);

  return s;

}
开发者ID:zhugeyicixin,项目名称:Mesmer3.0,代码行数:29,代码来源:dd_real.cpp


示例7: cos

dd_real cos(const dd_real &a) {

  if (a.is_zero()) {
    return 1.0;
  }

  /* First reduce modulo 2*pi so that |r| <= pi. */
  dd_real r = drem(a, dd_real::_2pi);

  /* Now reduce by modulo pi/2 and then by pi/16 so that
     we obtain numbers a, b, and t. */
  dd_real t;
  dd_real sin_t, cos_t;
  dd_real s, c;
  int j = to_int(divrem(r, dd_real::_pi2, t));
  int abs_j = std::abs(j);
  int k = to_int(divrem(t, dd_real::_pi16, t));
  int abs_k = std::abs(k);

  if (abs_j > 2) {
    dd_real::abort("(dd_real::cos): Cannot reduce modulo pi/2.");
    return dd_real::_nan;
  }

  if (abs_k > 4) {
    dd_real::abort("(dd_real::cos): Cannot reduce modulo pi/16.");
    return dd_real::_nan;
  }

  sincos_taylor(t, sin_t, cos_t);

  if (abs_k == 0) {
    s = sin_t;
    c = cos_t;
  } else {
    dd_real u = dd_real::cos_table[abs_k-1];
    dd_real v = dd_real::sin_table[abs_k-1];

    if (k > 0) {
      s = u * sin_t + v * cos_t;
      c = u * cos_t - v * sin_t;
    } else {
      s = u * sin_t - v * cos_t;
      c = u * cos_t + v * sin_t;
    }
  }

  if (abs_j == 0) {
    r = c;
  } else if (j == 1) {
    r = -s;
  } else if (j == -1) {
    r = s;
  } else {
    r = -c;
  }

  return r;
}
开发者ID:zhugeyicixin,项目名称:Mesmer3.0,代码行数:59,代码来源:dd_real.cpp


示例8: cosh

dd_real cosh(const dd_real &a) {
  if (a.is_zero()) {
    return 1.0;
  }

  dd_real ea = exp(a);
  return mul_pwr2(ea + inv(ea), 0.5);
}
开发者ID:zhugeyicixin,项目名称:Mesmer3.0,代码行数:8,代码来源:dd_real.cpp


示例9: tanh

dd_real tanh(const dd_real &a) {
  if (a.is_zero()) {
    return 0.0;
  }

  dd_real ea = exp(a);
  dd_real inv_ea = inv(ea);
  return (ea - inv_ea) / (ea + inv_ea);
}
开发者ID:zhugeyicixin,项目名称:Mesmer3.0,代码行数:9,代码来源:dd_real.cpp


示例10: atan2

dd_real atan2(const dd_real &y, const dd_real &x) {
  /* Strategy: Instead of using Taylor series to compute 
     arctan, we instead use Newton's iteration to solve
     the equation

        sin(z) = y/r    or    cos(z) = x/r

     where r = sqrt(x^2 + y^2).
     The iteration is given by

        z' = z + (y - sin(z)) / cos(z)          (for equation 1)
        z' = z - (x - cos(z)) / sin(z)          (for equation 2)

     Here, x and y are normalized so that x^2 + y^2 = 1.
     If |x| > |y|, then first iteration is used since the 
     denominator is larger.  Otherwise, the second is used.
  */

  if (x.is_zero()) {
    
    if (y.is_zero()) {
      /* Both x and y is zero. */
      dd_real::abort("(dd_real::atan2): Both arguments zero.");
      return dd_real::_nan;
    }

    return (y.is_positive()) ? dd_real::_pi2 : -dd_real::_pi2;
  } else if (y.is_zero()) {
    return (x.is_positive()) ? dd_real(0.0) : dd_real::_pi;
  }

  if (x == y) {
    return (y.is_positive()) ? dd_real::_pi4 : -dd_real::_3pi4;
  }

  if (x == -y) {
    return (y.is_positive()) ? dd_real::_3pi4 : -dd_real::_pi4;
  }

  dd_real r = sqrt(sqr(x) + sqr(y));
  dd_real xx = x / r;
  dd_real yy = y / r;

  /* Compute double precision approximation to atan. */
  dd_real z = std::atan2(to_double(y), to_double(x));
  dd_real sin_z, cos_z;

  if (xx > yy) {
    /* Use Newton iteration 1.  z' = z + (y - sin(z)) / cos(z)  */
    sincos(z, sin_z, cos_z);
    z += (yy - sin_z) / cos_z;
  } else {
    /* Use Newton iteration 2.  z' = z - (x - cos(z)) / sin(z)  */
    sincos(z, sin_z, cos_z);
    z -= (xx - cos_z) / sin_z;
  }

  return z;
}
开发者ID:zhugeyicixin,项目名称:Mesmer3.0,代码行数:59,代码来源:dd_real.cpp


示例11: nroot

/* Computes the n-th root of the double-double number a.
   NOTE: n must be a positive integer.  
   NOTE: If n is even, then a must not be negative.       */
dd_real nroot(const dd_real &a, int n) {
  /* Strategy:  Use Newton iteration for the function

          f(x) = x^(-n) - a

     to find its root a^{-1/n}.  The iteration is thus

          x' = x + x * (1 - a * x^n) / n

     which converges quadratically.  We can then find 
    a^{1/n} by taking the reciprocal.
  */

  if (n <= 0) {
    dd_real::abort("(dd_real::nroot): N must be positive.");
    return dd_real::_nan;
  }

  if (n%2 == 0 && a.is_negative()) {
    dd_real::abort("(dd_real::nroot): Negative argument.");
    return dd_real::_nan;
  }

  if (n == 1) {
    return a;
  } 
  if (n == 2) {
    return sqrt(a);
  }

  if (a.is_zero())
    return 0.0;

  /* Note  a^{-1/n} = exp(-log(a)/n) */
  dd_real r = abs(a);
  dd_real x = std::exp(-std::log(r.hi) / n);

  /* Perform Newton's iteration. */
  x += x * (1.0 - r * npwr(x, n)) / static_cast<double>(n);
  if (a.hi < 0.0)
    x = -x;
  return 1.0/x;
}
开发者ID:zhugeyicixin,项目名称:Mesmer3.0,代码行数:46,代码来源:dd_real.cpp


示例12: sincos_taylor

static void sincos_taylor(const dd_real &a,
                          dd_real &sin_a, dd_real &cos_a) {
  if (a.is_zero()) {
    sin_a = 0.0;
    cos_a = 1.0;
    return;
  }

  sin_a = sin_taylor(a);
  cos_a = sqrt(1.0 - sqr(sin_a));
}
开发者ID:astrofrog,项目名称:sphere,代码行数:11,代码来源:dd_real.cpp


示例13: asin

dd_real asin(const dd_real &a) {
  dd_real abs_a = abs(a);

  if (abs_a > 1.0) {
    dd_real::abort("(dd_real::asin): Argument out of domain.");
    return dd_real::_nan;
  }

  if (abs_a.is_one()) {
    return (a.is_positive()) ? dd_real::_pi2 : -dd_real::_pi2;
  }

  return atan2(a, sqrt(1.0 - sqr(a)));
}
开发者ID:zhugeyicixin,项目名称:Mesmer3.0,代码行数:14,代码来源:dd_real.cpp


示例14: acos

dd_real acos(const dd_real &a) {
  dd_real abs_a = abs(a);

  if (abs_a > 1.0) {
    dd_real::abort("(dd_real::acos): Argument out of domain.");
    return dd_real::_nan;
  }

  if (abs_a.is_one()) {
    return (a.is_positive()) ? dd_real(0.0) : dd_real::_pi;
  }

  return atan2(sqrt(1.0 - sqr(a)), a);
}
开发者ID:zhugeyicixin,项目名称:Mesmer3.0,代码行数:14,代码来源:dd_real.cpp


示例15: sqrt

/* Computes the square root of the double-double number dd.
   NOTE: dd must be a non-negative number.                   */
QD_API dd_real sqrt(const dd_real &a) {
  /* Strategy:  Use Karp's trick:  if x is an approximation
     to sqrt(a), then

        sqrt(a) = a*x + [a - (a*x)^2] * x / 2   (approx)

     The approximation is accurate to twice the accuracy of x.
     Also, the multiplication (a*x) and [-]*x can be done with
     only half the precision.
  */

  if (a.is_zero())
    return 0.0;

  if (a.is_negative()) {
    dd_real::abort("(dd_real::sqrt): Negative argument.");
    return dd_real::_nan;
  }

  double x = 1.0 / std::sqrt(a.hi);
  double ax = a.hi * x;
  return dd_real::add(ax, (a - dd_real::sqr(ax)).hi * (x * 0.5));
}
开发者ID:zhugeyicixin,项目名称:Mesmer3.0,代码行数:25,代码来源:dd_real.cpp


示例16: cos_taylor

static dd_real cos_taylor(const dd_real &a) {
  const double thresh = 0.5 * dd_real::_eps;
  dd_real r, s, t, x;

  if (a.is_zero()) {
    return 1.0;
  }

  x = -sqr(a);
  r = x;
  s = 1.0 + mul_pwr2(r, 0.5);
  int i = 1;
  do {
    r *= x;
    t = r * dd_real(inv_fact[i][0], inv_fact[i][1]);
    s += t;
    i += 2;
  } while (i < n_inv_fact && std::abs(to_double(t)) > thresh);

  return s;
}
开发者ID:astrofrog,项目名称:sphere,代码行数:21,代码来源:dd_real.cpp


示例17: sin_taylor

/* Computes sin(a) using Taylor series.
   Assumes |a| <= pi/32.                           */
static dd_real sin_taylor(const dd_real &a) {
  const double thresh = 0.5 * std::abs(to_double(a)) * dd_real::_eps;
  dd_real r, s, t, x;

  if (a.is_zero()) {
    return 0.0;
  }

  int i = 0;
  x = -sqr(a);
  s = a;
  r = a;
  do {
    r *= x;
    t = r * dd_real(inv_fact[i][0], inv_fact[i][1]);
    s += t;
    i += 2;
  } while (i < n_inv_fact && std::abs(to_double(t)) > thresh);

  return s;
}
开发者ID:astrofrog,项目名称:sphere,代码行数:23,代码来源:dd_real.cpp


示例18: cos_taylor

static dd_real cos_taylor(const dd_real &a) {
  const double thresh = 1.0e-35 * std::abs(to_double(a));
  dd_real t;  /* Term being added. */
  dd_real s;  /* Current partial sum. */
  dd_real x;  /* = -sqr(a) */
  double m;

  if (a.is_zero()) {
    return 1.0;
  }

  x = -sqr(a);
  t = 0.5 * x;
  s = 1.0 + t;
  m = 2.0;
  do {
    m += 2.0;
    t *= x;
    t /= (m*(m-1.0));
    s += t;
  } while (std::abs(to_double(t)) > thresh);

  return s;
}
开发者ID:zhugeyicixin,项目名称:Mesmer3.0,代码行数:24,代码来源:dd_real.cpp


示例19: sin

dd_real sin(const dd_real &a) {  

  /* Strategy.  To compute sin(x), we choose integers a, b so that

       x = s + a * (pi/2) + b * (pi/16)

     and |s| <= pi/32.  Using the fact that 

       sin(pi/16) = 0.5 * sqrt(2 - sqrt(2 + sqrt(2)))

     we can compute sin(x) from sin(s), cos(s).  This greatly 
     increases the convergence of the sine Taylor series. */

  if (a.is_zero()) {
    return 0.0;
  }

  /* First reduce modulo 2*pi so that |r| <= pi. */
  dd_real r = drem(a, dd_real::_2pi);

  /* Now reduce by modulo pi/2 and then by pi/16 so that
     we obtain numbers a, b, and t. */
  dd_real t;
  dd_real sin_t, cos_t;
  dd_real s, c;
  int j = to_int(divrem(r, dd_real::_pi2, t));
  int abs_j = std::abs(j);
  int k = to_int(divrem(t, dd_real::_pi16, t));
  int abs_k = std::abs(k);

  if (abs_j > 2) {
    dd_real::abort("(dd_real::sin): Cannot reduce modulo pi/2.");
    return dd_real::_nan;
  }

  if (abs_k > 4) {
    dd_real::abort("(dd_real::sin): Cannot reduce modulo pi/16.");
    return dd_real::_nan;
  }

  if (abs_j == 0) {
    if (k == 0) {
      r = sin_taylor(t);
    } else if (k > 0) {
      dd_real u = dd_real::cos_table[abs_k-1];
      dd_real v = dd_real::sin_table[abs_k-1];
      dd_real sin_t, cos_t;
      sincos_taylor(t, sin_t, cos_t);
      r = u * sin_t + v * cos_t;
    } else {
      dd_real u = dd_real::cos_table[abs_k-1];
      dd_real v = dd_real::sin_table[abs_k-1];
      dd_real sin_t, cos_t;
      sincos_taylor(t, sin_t, cos_t);
      r = u * sin_t - v * cos_t;
    }
  } else if (j == 1) {
    if (k == 0) {
      r = cos_taylor(t);
    } else if (k > 0) {
      dd_real u = dd_real::cos_table[abs_k-1];
      dd_real v = dd_real::sin_table[abs_k-1];
      dd_real sin_t, cos_t;
      sincos_taylor(t, sin_t, cos_t);
      r = u * cos_t - v * sin_t;
    } else {
      dd_real u = dd_real::cos_table[abs_k-1];
      dd_real v = dd_real::sin_table[abs_k-1];
      dd_real sin_t, cos_t;
      sincos_taylor(t, sin_t, cos_t);
      r = u * cos_t + v * sin_t;
    }
  } else if (j == -1) {
    if (k == 0) {
      r = -cos_taylor(t);
    } else if (k > 0) {
      dd_real u = dd_real::cos_table[abs_k-1];
      dd_real v = dd_real::sin_table[abs_k-1];
      dd_real sin_t, cos_t;
      sincos_taylor(t, sin_t, cos_t);
      r = v * sin_t - u * cos_t;
    } else if (k < 0) {
      dd_real u = dd_real::cos_table[abs_k-1];
      dd_real v = dd_real::sin_table[abs_k-1];
      dd_real sin_t, cos_t;
      sincos_taylor(t, sin_t, cos_t);
      r = -u * cos_t - v * sin_t;
    }
  } else {
    if (k == 0) {
      r = -sin_taylor(t);
    } else if (k > 0) {
      dd_real u = dd_real::cos_table[abs_k-1];
      dd_real v = dd_real::sin_table[abs_k-1];
      dd_real sin_t, cos_t;
      sincos_taylor(t, sin_t, cos_t);
      r = -u * sin_t - v * cos_t;
    } else {
      dd_real u = dd_real::cos_table[abs_k-1];
      dd_real v = dd_real::sin_table[abs_k-1];
//.........这里部分代码省略.........
开发者ID:zhugeyicixin,项目名称:Mesmer3.0,代码行数:101,代码来源:dd_real.cpp


示例20: cos

dd_real cos(const dd_real &a) {

  if (a.is_zero()) {
    return 1.0;
  }

  // approximately reduce modulo 2*pi
  dd_real z = nint(a / dd_real::_2pi);
  dd_real r = a - z * dd_real::_2pi;

  // approximately reduce modulo pi/2 and then modulo pi/16
  dd_real t;
  double q = std::floor(r.x[0] / dd_real::_pi2.x[0] + 0.5);
  t = r - dd_real::_pi2 * q;
  int j = static_cast<int>(q);
  q = std::floor(t.x[0] / _pi16.x[0] + 0.5);
  t -= _pi16 * q;
  int k = static_cast<int>(q);
  int abs_k = std::abs(k);

  if (j < -2 || j > 2) {
    dd_real::error("(dd_real::cos): Cannot reduce modulo pi/2.");
    return dd_real::_nan;
  }

  if (abs_k > 4) {
    dd_real::error("(dd_real::cos): Cannot reduce modulo pi/16.");
    return dd_real::_nan;
  }

  if (k == 0) {
    switch (j) {
      case 0:
        return cos_taylor(t);
      case 1:
        return -sin_taylor(t);
      case -1:
        return sin_taylor(t);
      default:
        return -cos_taylor(t);
    }
  }

  dd_real sin_t, cos_t;
  sincos_taylor(t, sin_t, cos_t);
  dd_real u(cos_table[abs_k-1][0], cos_table[abs_k-1][1]);
  dd_real v(sin_table[abs_k-1][0], sin_table[abs_k-1][1]);

  if (j == 0) {
    if (k > 0) {
      r = u * cos_t - v * sin_t;
    } else {
      r = u * cos_t + v * sin_t;
    }
  } else if (j == 1) {
    if (k > 0) {
      r = - u * sin_t - v * cos_t;
    } else {
      r = v * cos_t - u * sin_t;
    }
  } else if (j == -1) {
    if (k > 0) {
      r = u * sin_t + v * cos_t;
    } else {
      r = u * sin_t - v * cos_t;
    }
  } else {
    if (k > 0) {
      r = v * sin_t - u * cos_t;
    } else {
      r = - u * cos_t - v * sin_t;
    }
  }

  return r;
}
开发者ID:astrofrog,项目名称:sphere,代码行数:76,代码来源:dd_real.cpp



注:本文中的dd_real类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C++ decimal类代码示例发布时间:2022-05-31
下一篇:
C++ dc_dist_object类代码示例发布时间:2022-05-31
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap