• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

C++ cclib::GenericIndexedCloudPersist类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C++中cclib::GenericIndexedCloudPersist的典型用法代码示例。如果您正苦于以下问题:C++ GenericIndexedCloudPersist类的具体用法?C++ GenericIndexedCloudPersist怎么用?C++ GenericIndexedCloudPersist使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了GenericIndexedCloudPersist类的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。

示例1: ComputeFacetExtensions

//helper: computes a facet horizontal and vertical extensions
void ComputeFacetExtensions(CCVector3& N, ccPolyline* facetContour, double& horizExt, double& vertExt)
{
	//horizontal and vertical extensions
	horizExt = vertExt = 0;
	
	CCLib::GenericIndexedCloudPersist* vertCloud = facetContour->getAssociatedCloud();
	if (vertCloud)
	{
		//oriRotMat.applyRotation(N); //DGM: oriRotMat is only for display!
		//we assume that at this point the "up" direction is always (0,0,1)
		CCVector3 Xf(1,0,0), Yf(0,1,0);
		//we get the horizontal vector on the plane
		CCVector3 D = CCVector3(0,0,1).cross(N);
		if (D.norm2() > ZERO_TOLERANCE) //otherwise the facet is horizontal!
		{
			Yf = D;
			Yf.normalize();
			Xf = N.cross(Yf);
		}

		const CCVector3* G = CCLib::Neighbourhood(vertCloud).getGravityCenter();

		ccBBox box;
		for (unsigned i=0; i<vertCloud->size(); ++i)
		{
			const CCVector3 P = *(vertCloud->getPoint(i)) - *G;
			CCVector3 p( P.dot(Xf), P.dot(Yf), 0 );
			box.add(p);
		}

		vertExt = box.getDiagVec().x;
		horizExt = box.getDiagVec().y;
	}
}
开发者ID:Sephrimoth,项目名称:trunk,代码行数:35,代码来源:qFacets.cpp


示例2: readPolygonFile

void TestShpFilter::readPolygonFile(const QString &filePath) const
{
	const unsigned expectedNumPoints = 14; // File has 15 points but as its a polygon, CC will keep the 14 first pts
	CCVector3d bbMin(-626146.0444521683, 5219675.646154184, 0);
	CCVector3d shift = ccGlobalShiftManager::BestShift(bbMin);
	bool shiftEnabled = true;

	ccHObject container;
	FileIOFilter::LoadParameters params;
	params.alwaysDisplayLoadDialog = false;
	params.shiftHandlingMode = ccGlobalShiftManager::Mode::NO_DIALOG;
	params.coordinatesShiftEnabled = &shiftEnabled;
	params.coordinatesShift = &shift;
	params.preserveShiftOnSave = true;
	ShpFilter filter;

	CC_FILE_ERROR error = filter.loadFile(filePath, container, params);
	QVERIFY(error == CC_FERR_NO_ERROR);

	QVERIFY(container.getChildrenNumber() == 1);
	ccHObject *item = container.getFirstChild();
	QVERIFY(item->getClassID() == CC_TYPES::POLY_LINE);

	auto *poly = static_cast<ccPolyline *>(item);
	QVERIFY(poly->size() == expectedNumPoints);
	QVERIFY(!poly->isScalarFieldEnabled());
	QVERIFY(!poly->is2DMode());
	QVERIFY(poly->isClosed());

	CCLib::GenericIndexedCloudPersist *vertices = poly->getAssociatedCloud();
	QVERIFY(vertices->size() == expectedNumPoints);

	std::array<double, 14> expectedXs{-626146.0444521683, -187004.53123683017, -59884.61951660062, 169316.43343351,
	                                  180872.78904444003, 300288.4636907161, 914701.3703384919, 752912.3917854726,
	                                  880032.303505702, 749060.273248496, 473633.79785466543, 375404.77516176086,
	                                  -212043.3017271784, -187004.53123683017};
	std::array<double, 14> expectedYs{6182705.280398346, 6409980.274079968, 6383015.444321131, 6488948.704087989,
	                                  6606438.319465778, 6650737.682641009, 6236634.939916019, 5878387.91597719,
	                                  5391094.921049644, 5271679.246403368, 5352573.735679878, 5219675.646154184,
	                                  5348721.617142901, 5789789.189626727};

	for (unsigned i(0); i < expectedNumPoints; ++i)
	{
		const CCVector3 *p = vertices->getPoint(i);
		QCOMPARE(p->x, static_cast<ScalarType >(expectedXs[i] + shift.x));
		QCOMPARE(p->y, static_cast<ScalarType >(expectedYs[i] + shift.y));
		QCOMPARE(p->z, 0.0);
	}
}
开发者ID:asmaloney,项目名称:trunk,代码行数:49,代码来源:TestShpFilter.cpp


示例3: ICP

bool ccRegistrationTools::ICP(	ccHObject* data,
								ccHObject* model,
								ccGLMatrix& transMat,
								double &finalScale,
								double& finalRMS,
								unsigned& finalPointCount,
								double minRMSDecrease,
								unsigned maxIterationCount,
								unsigned randomSamplingLimit,
								bool removeFarthestPoints,
								CCLib::ICPRegistrationTools::CONVERGENCE_TYPE method,
								bool adjustScale,
								double finalOverlapRatio/*=1.0*/,
								bool useDataSFAsWeights/*=false*/,
								bool useModelSFAsWeights/*=false*/,
								int filters/*=CCLib::ICPRegistrationTools::SKIP_NONE*/,
								int maxThreadCount/*=0*/,
								QWidget* parent/*=0*/)
{
	//progress bar
	QScopedPointer<ccProgressDialog> progressDlg;
	if (parent)
	{
		progressDlg.reset(new ccProgressDialog(false, parent));
	}

	Garbage<CCLib::GenericIndexedCloudPersist> cloudGarbage;

	//if the 'model' entity is a mesh, we need to sample points on it
	CCLib::GenericIndexedCloudPersist* modelCloud = nullptr;
	ccGenericMesh* modelMesh = nullptr;
	if (model->isKindOf(CC_TYPES::MESH))
	{
		modelMesh = ccHObjectCaster::ToGenericMesh(model);
		modelCloud = modelMesh->getAssociatedCloud();
	}
	else
	{
		modelCloud = ccHObjectCaster::ToGenericPointCloud(model);
	}

	//if the 'data' entity is a mesh, we need to sample points on it
	CCLib::GenericIndexedCloudPersist* dataCloud = nullptr;
	if (data->isKindOf(CC_TYPES::MESH))
	{
		dataCloud = CCLib::MeshSamplingTools::samplePointsOnMesh(ccHObjectCaster::ToGenericMesh(data), s_defaultSampledPointsOnDataMesh, progressDlg.data());
		if (!dataCloud)
		{
			ccLog::Error("[ICP] Failed to sample points on 'data' mesh!");
			return false;
		}
		cloudGarbage.add(dataCloud);
	}
	else
	{
		dataCloud = ccHObjectCaster::ToGenericPointCloud(data);
	}

	//we activate a temporary scalar field for registration distances computation
	CCLib::ScalarField* dataDisplayedSF = nullptr;
	int oldDataSfIdx = -1, dataSfIdx = -1;

	//if the 'data' entity is a real ccPointCloud, we can even create a proper temporary SF for registration distances
	if (data->isA(CC_TYPES::POINT_CLOUD))
	{
		ccPointCloud* pc = static_cast<ccPointCloud*>(data);
		dataDisplayedSF = pc->getCurrentDisplayedScalarField();
		oldDataSfIdx = pc->getCurrentInScalarFieldIndex();
		dataSfIdx = pc->getScalarFieldIndexByName(REGISTRATION_DISTS_SF);
		if (dataSfIdx < 0)
			dataSfIdx = pc->addScalarField(REGISTRATION_DISTS_SF);
		if (dataSfIdx >= 0)
			pc->setCurrentScalarField(dataSfIdx);
		else
		{
			ccLog::Error("[ICP] Couldn't create temporary scalar field! Not enough memory?");
			return false;
		}
	}
	else
	{
		if (!dataCloud->enableScalarField())
		{
			ccLog::Error("[ICP] Couldn't create temporary scalar field! Not enough memory?");
			return false;
		}
	}

	//add a 'safety' margin to input ratio
	static double s_overlapMarginRatio = 0.2;
	finalOverlapRatio = std::max(finalOverlapRatio, 0.01); //1% minimum
	//do we need to reduce the input point cloud (so as to be close
	//to the theoretical number of overlapping points - but not too
	//low so as we are not registered yet ;)
	if (finalOverlapRatio < 1.0 - s_overlapMarginRatio)
	{
		//DGM we can now use 'approximate' distances as SAITO algorithm is exact (but with a coarse resolution)
		//level = 7 if < 1.000.000
		//level = 8 if < 10.000.000
		//level = 9 if > 10.000.000
//.........这里部分代码省略.........
开发者ID:cloudcompare,项目名称:trunk,代码行数:101,代码来源:ccRegistrationTools.cpp


示例4: ComputeSurfacesAndVolumes

bool DistanceMapGenerationTool::ComputeSurfacesAndVolumes(	const QSharedPointer<Map>& map,
															ccPolyline* profile,
															Measures& surface,
															Measures& volume)
{
	if (!map || !profile)
		//invalid input!
		return false;

	CCLib::GenericIndexedCloudPersist* vertices = profile->getAssociatedCloud();
	unsigned vertexCount = vertices ? vertices->size() : 0;
	if (vertexCount < 2)
	{
		//invalid profile!
		return false;
	}

	const ccPointCloud* pcVertices = dynamic_cast<ccPointCloud*>(profile->getAssociatedCloud());
	if (!pcVertices)
		return false;

	//surface measures
	surface = Measures();
	//volume measures
	volume = Measures();

	//theoretical surface and volumes
	{
		double surfaceProd = 0.0;
		double volumeProd = 0.0;
		const double yMax = map->yMin + map->yStep * (double)map->ySteps;
		for (unsigned i=1; i<pcVertices->size(); ++i)
		{
			const CCVector3* P0 = pcVertices->getPoint(i-1);
			const CCVector3* P1 = pcVertices->getPoint(i);

			//polyline: X = radius, Y = height
			double r0 = P0->x;
			double y0 = P0->y;
			double r1 = P1->x;
			double y1 = P1->y;
			
			//without loss of generality ;)
			if (y0 > y1)
			{
				std::swap(y0,y1);
				std::swap(r0,r1);
			}

			//segment is totally outside the map?
			if (y1 < map->yMin || y0 > yMax)
			{
				//we skip it
				continue;
			}

			if (y0 < map->yMin)
			{
				//interpolate r0 @ map->yMin
				double alpha = (map->yMin - y0)/(y1 - y0);
				assert(alpha >= 0.0 && alpha <= 1.0);
				r0 = r0 + alpha * (r1 - r0);
				y0 = map->yMin;
			}
			else if (y1 > yMax)
			{
				//interpolate r1 @ map->yMax
				double alpha = (yMax - y0)/(y1 - y0);
				assert(alpha >= 0.0 && alpha <= 1.0);
				r1 = r0 + alpha * (r1 - r0);
				y1 = yMax;
			}

			//product for truncated cone surface (see http://en.wikipedia.org/wiki/Frustum)
			double segmentLength = sqrt((r1-r0)*(r1-r0) + (y1-y0)*(y1-y0));
			surfaceProd += (r0 + r1) * segmentLength;

			//product for truncated cone volume (see http://en.wikipedia.org/wiki/Frustum)
			volumeProd += (y1 - y0) * (r0*r0 + r1*r1 + r0*r1);
		}

		surface.theoretical = M_PI * surfaceProd;
		volume.theoretical  = M_PI / 3.0 * volumeProd;
	}

	int revolDim = GetPoylineRevolDim(profile);
	if (revolDim < 0)
		return false;

	//constant factors
	const double surfPart = map->xStep / 2.0;				//perimeter of a portion of circle of angle alpha = alpha * r (* height to get the external surface)
	const double volPart = map->yStep * map->xStep / 6.0;	//area of a portion of circle of angle alpha = alpha/2 * r^2 (* height to get the volume)

	const MapCell* cell = &map->at(0);
	//for each row
	for (unsigned j=0; j<map->ySteps; ++j)
	{
		//corresponding heights
		double height1 = map->yMin + (double)j * map->yStep;
		double height2 = height1 + map->yStep;
//.........这里部分代码省略.........
开发者ID:ORNis,项目名称:CloudCompare,代码行数:101,代码来源:distanceMapGenerationTool.cpp


示例5: ComputeRadialDist

bool DistanceMapGenerationTool::ComputeRadialDist(	ccPointCloud* cloud,
													ccPolyline* profile,
													bool storeRadiiAsSF/*=false*/,
													ccMainAppInterface* app/*=0*/)
{
	//check input cloud and profile/polyline
	if (!cloud || !profile)
	{
		if (app)
			app->dispToConsole(QString("Internal error: invalid input parameters"),ccMainAppInterface::ERR_CONSOLE_MESSAGE);
		return false;
	}
	assert(cloud && profile);

	//number of vertices for the profile
	CCLib::GenericIndexedCloudPersist* vertices = profile->getAssociatedCloud();
	unsigned vertexCount = vertices->size();
	if (vertexCount < 2)
	{
		if (app)
			app->dispToConsole(QString("Invalid polyline (not enough vertices)"),ccMainAppInterface::ERR_CONSOLE_MESSAGE);
		return false;
	}

	//profile meta-data
	ProfileMetaData profileDesc;
	if (!GetPoylineMetaData(profile, profileDesc))
	{
		if (app)
			app->dispToConsole(QString("Invalid polyline (bad or missing meta-data)"),ccMainAppInterface::ERR_CONSOLE_MESSAGE);
		return false;
	}

	//reserve a new scalar field (or take the old one if it already exists)
	int sfIdx = cloud->getScalarFieldIndexByName(RADIAL_DIST_SF_NAME);
	if (sfIdx < 0)
		sfIdx = cloud->addScalarField(RADIAL_DIST_SF_NAME);
	if (sfIdx < 0)
	{
		if (app)
			app->dispToConsole(QString("Failed to allocate a new scalar field for computing distances! Try to free some memory ..."),ccMainAppInterface::ERR_CONSOLE_MESSAGE);
		return false;
	}
	ccScalarField* sf = static_cast<ccScalarField*>(cloud->getScalarField(sfIdx));
	unsigned pointCount = cloud->size();
	sf->resize(pointCount); //should always be ok
	assert(sf);

	ccScalarField* radiiSf = 0;
	if (storeRadiiAsSF)
	{
		int sfIdxRadii = cloud->getScalarFieldIndexByName(RADII_SF_NAME);
		if (sfIdxRadii < 0)
			sfIdxRadii = cloud->addScalarField(RADII_SF_NAME);
		if (sfIdxRadii < 0)
		{
			if (app)
				app->dispToConsole(QString("Failed to allocate a new scalar field for storing radii! You should try to free some memory ..."),ccMainAppInterface::WRN_CONSOLE_MESSAGE);
			//return false;
		}
		else
		{
			radiiSf = static_cast<ccScalarField*>(cloud->getScalarField(sfIdxRadii));
			radiiSf->resize(pointCount); //should always be ok
		}
	}

	bool success = true;

	//now compute the distance between the cloud and the (implicit) surface of revolution
	{
		ccGLMatrix cloudToSurface = profileDesc.computeProfileToSurfaceTrans();

		//we deduce the horizontal dimensions from the revolution axis
		const unsigned char dim1 = static_cast<unsigned char>(profileDesc.revolDim < 2 ? profileDesc.revolDim+1 : 0);
		const unsigned char dim2 = (dim1 < 2 ? dim1+1 : 0);

		ccProgressDialog dlg(true, app ? app->getMainWindow() : 0);
		dlg.setMethodTitle("Cloud to profile radial distance");
		dlg.setInfo(qPrintable(QString("Polyline: %1 vertices\nCloud: %2 points").arg(vertexCount).arg(pointCount)));
		dlg.start();
		CCLib::NormalizedProgress nProgress(static_cast<CCLib::GenericProgressCallback*>(&dlg),pointCount);

		for (unsigned i=0; i<pointCount; ++i)
		{
			const CCVector3* P = cloud->getPoint(i);

			//relative point position
			CCVector3 Prel = cloudToSurface * (*P);

			//deduce point height and radius (i.e. in profile 2D coordinate system)
			double height = Prel.u[profileDesc.revolDim] - profileDesc.heightShift;
			//TODO FIXME: we assume the surface of revolution is smooth!
			double radius = sqrt(Prel.u[dim1]*Prel.u[dim1] + Prel.u[dim2]*Prel.u[dim2]);

			if (radiiSf)
			{
				ScalarType radiusVal = static_cast<ScalarType>(radius);
				radiiSf->setValue(i,radiusVal);
			}
//.........这里部分代码省略.........
开发者ID:ORNis,项目名称:CloudCompare,代码行数:101,代码来源:distanceMapGenerationTool.cpp


示例6: ConvertMapToCloud

ccPointCloud* DistanceMapGenerationTool::ConvertMapToCloud(	const QSharedPointer<Map>& map,
															ccPolyline* profile,
															double baseRadius/*=1.0*/,
															bool keepNaNPoints/*=true*/)
{
	if (!map || !profile)
		return 0;

	unsigned count = map->ySteps * map->xSteps;

	ccPointCloud* cloud = new ccPointCloud("map");
	ccScalarField* sf = new ccScalarField("values");
	if (!cloud->reserve(count) || !sf->reserve(count))
	{
		//not enough memory
		delete cloud;
		sf->release();
		return 0;
	}

	//number of vertices
	CCLib::GenericIndexedCloudPersist* polyVertices = profile->getAssociatedCloud();
	unsigned polyVertCount = polyVertices->size();
	if (polyVertCount < 2)
		return 0;

	//profile meta-data (we only need the height shift)
	PointCoordinateType heightShift = 0;
	GetPolylineHeightShift(profile, heightShift);

	const double xStep = baseRadius * (2.0*M_PI) / static_cast<double>(map->xSteps);

	const MapCell* cell = &map->at(0);
	for (unsigned j=0; j<map->ySteps; ++j)
	{
		CCVector3 P(0,static_cast<PointCoordinateType>(map->yMin + (static_cast<double>(j) + 0.5) * map->yStep),0);

		//for each column
		for (unsigned i=0; i<map->xSteps; ++i, ++cell)
		{
			if (keepNaNPoints || cell->count != 0)
			{
				P.x = static_cast<PointCoordinateType>(map->xMin + (static_cast<double>(i) + 0.5) * xStep);

				//search nearest "segment" in polyline
				for (unsigned k=1; k<polyVertCount; ++k)
				{
					const CCVector3* A = polyVertices->getPoint(k-1);
					const CCVector3* B = polyVertices->getPoint(k);

					double alpha = (P.y - heightShift - A->y)/(B->y - A->y);
					if (alpha >= 0.0 && alpha <= 1.0)
					{
						//we deduce the right radius by linear interpolation
						double radius_th = A->x + alpha * (B->x - A->x);
						//TODO: we take the first radius (even if there are other segments at
						//this particular height, because we can't guess which one is the 'right' one!
						P.z = static_cast<PointCoordinateType>(radius_th);
						break;
					}
				}

				cloud->addPoint(P);

				ScalarType val = cell->count ? static_cast<ScalarType>(cell->value) : NAN_VALUE;
				sf->addElement(val);
			}
		}
	}

	sf->computeMinAndMax();
	int sfIdx = cloud->addScalarField(sf);
	cloud->setCurrentDisplayedScalarField(sfIdx);
	cloud->showSF(true);
	cloud->resize(cloud->size()); //if we have skipped NaN values!

	return cloud;
}
开发者ID:ORNis,项目名称:CloudCompare,代码行数:78,代码来源:distanceMapGenerationTool.cpp


示例7: ConvertProfileToMesh

ccMesh* DistanceMapGenerationTool::ConvertProfileToMesh(ccPolyline* profile,
														const ccGLMatrix& cloudToSurface,
														bool counterclockwise,
														unsigned angularSteps/*=36*/,
														QImage mapTexture/*=QImage()*/)
{
	if (!profile || angularSteps < 3)
	{
		return 0;
	}

	//profile vertices
	CCLib::GenericIndexedCloudPersist* profileVertices = profile->getAssociatedCloud();
	unsigned profVertCount = profileVertices->size();
	if (profVertCount < 2)
	{
		return 0;
	}

	//profile meta-data
	ProfileMetaData profileDesc;
	if (!GetPoylineMetaData(profile, profileDesc))
	{
		assert(false);
		return 0;
	}

	unsigned char Z = static_cast<unsigned char>(profileDesc.revolDim);
	//we deduce the 2 other ('horizontal') dimensions
	const unsigned char X = (Z < 2 ? Z+1 : 0);
	const unsigned char Y = (X < 2 ? X+1 : 0);

	unsigned meshVertCount = profVertCount * angularSteps;
	unsigned meshFaceCount = (profVertCount-1) * angularSteps * 2;
	ccPointCloud* cloud = new ccPointCloud("vertices");
	ccMesh* mesh = new ccMesh(cloud);
	if (!cloud->reserve(meshVertCount) || !mesh->reserve(meshFaceCount))
	{
		//not enough memory
		delete cloud;
		delete mesh;
		return 0;
	}

	ccGLMatrix surfaceToCloud = cloudToSurface.inverse();

	//create vertices
	{
		double cwSign = (counterclockwise ? -1.0 : 1.0);
		for (unsigned j=0; j<angularSteps; ++j)
		{
			double angle_rad = static_cast<double>(j)/angularSteps * (2*M_PI);

			CCVector3d N(sin(angle_rad) * cwSign,
						 cos(angle_rad),
						 0);

			for (unsigned i=0; i<profVertCount; ++i)
			{
				const CCVector3* P = profileVertices->getPoint(i);
				double radius = static_cast<double>(P->x);

				CCVector3 Pxyz;
				Pxyz.u[X] = static_cast<PointCoordinateType>(radius * N.x);
				Pxyz.u[Y] = static_cast<PointCoordinateType>(radius * N.y);
				Pxyz.u[Z] = P->y + profileDesc.heightShift;

				surfaceToCloud.apply(Pxyz);

				cloud->addPoint(Pxyz);
			}
		}
		mesh->addChild(cloud);
	}

	PointCoordinateType h0 = profileVertices->getPoint(0)->y;
	PointCoordinateType dH = profileVertices->getPoint(profVertCount-1)->y - h0;
	bool invertedHeight = (dH < 0);

	//create facets
	{
		for (unsigned j=0; j<angularSteps; ++j)
		{
			unsigned nextJ = ((j+1) % angularSteps);
			for (unsigned i=0; i+1<profVertCount; ++i)
			{
				unsigned vertA = j*profVertCount+i;
				unsigned vertB = nextJ*profVertCount+i;
				unsigned vertC = vertB+1;
				unsigned vertD = vertA+1;

				if (invertedHeight)
				{
					mesh->addTriangle(vertB,vertC,vertD);
					mesh->addTriangle(vertB,vertD,vertA);
				}
				else
				{
					mesh->addTriangle(vertB,vertD,vertC);
					mesh->addTriangle(vertB,vertA,vertD);
//.........这里部分代码省略.........
开发者ID:ORNis,项目名称:CloudCompare,代码行数:101,代码来源:distanceMapGenerationTool.cpp


示例8: doExportSegmentationPolyline

void ccGraphicalSegmentationTool::doExportSegmentationPolyline()
{
	MainWindow* mainWindow = MainWindow::TheInstance();
	if (mainWindow && m_segmentationPoly)
	{
		QMessageBox messageBox(0);
		
		messageBox.setWindowTitle("Choose export type");
		messageBox.setText("Export polyline in:\n - 2D (with coordinates relative to the screen)\n - 3D (with coordinates relative to the segmented entities)");
		QPushButton* button2D = new QPushButton("2D");
		QPushButton* button3D = new QPushButton("3D");
		messageBox.addButton(button2D,QMessageBox::AcceptRole);
		messageBox.addButton(button3D,QMessageBox::AcceptRole);
		messageBox.addButton(QMessageBox::Cancel);
		messageBox.setDefaultButton(button3D);
		messageBox.exec();
		if (messageBox.clickedButton() == messageBox.button(QMessageBox::Cancel))
		{
			//process cancelled by user
			return;
		}

		ccPolyline* poly = new ccPolyline(*m_segmentationPoly);

		//if we export the polyline in 3D, we must project its vertices
		bool mode2D = (messageBox.clickedButton() == button2D);
		if (!mode2D)
		{
			//get current display parameters
			const double* MM = m_associatedWin->getModelViewMatd(); //viewMat
			const double* MP = m_associatedWin->getProjectionMatd(); //projMat
			const GLdouble half_w = static_cast<GLdouble>(m_associatedWin->width())/2;
			const GLdouble half_h = static_cast<GLdouble>(m_associatedWin->height())/2;
			int VP[4];
			m_associatedWin->getViewportArray(VP);

			//project the 2D polyline in 3D
			CCLib::GenericIndexedCloudPersist* vertices = poly->getAssociatedCloud();
			ccPointCloud* verticesPC = dynamic_cast<ccPointCloud*>(vertices);
			if (verticesPC)
			{
				for (unsigned i=0; i<vertices->size(); ++i)
				{
					CCVector3* Pscreen = const_cast<CCVector3*>(verticesPC->getPoint(i));
					GLdouble xp,yp,zp;
					gluUnProject(half_w+Pscreen->x,half_h+Pscreen->y,0/*Pscreen->z*/,MM,MP,VP,&xp,&yp,&zp);
					Pscreen->x = static_cast<PointCoordinateType>(xp);
					Pscreen->y = static_cast<PointCoordinateType>(yp);
					Pscreen->z = static_cast<PointCoordinateType>(zp);
				}
				verticesPC->invalidateBoundingBox();
			}
			else
			{
				assert(false);
				ccLog::Warning("[Segmentation] Failed to convert 2D polyline to 3D! (internal inconsistency)");
				mode2D = false;
			}
		}
		
		poly->setName(QString("Segmentation polyline #%1").arg(++s_polylineExportCount));
		poly->setEnabled(false); //we don't want it to appear while the segmentation mode is enabled! (anyway it's 2D only...)
		poly->set2DMode(mode2D);
		poly->setColor(ccColor::yellow); //we use a different color so as to differentiate them from the active polyline!

		mainWindow->addToDB(poly);
		ccLog::Print(QString("[Segmentation] Polyline exported (%1 vertices)").arg(poly->size()));
	}
}
开发者ID:norbertwenzel,项目名称:CloudCompare,代码行数:69,代码来源:ccGraphicalSegmentationTool.cpp


示例9: doActionUseExistingPolyline

void ccGraphicalSegmentationTool::doActionUseExistingPolyline()
{
	MainWindow* mainWindow = MainWindow::TheInstance();
	if (mainWindow)
	{
		ccHObject* root = mainWindow->dbRootObject();
		ccHObject::Container polylines;
		if (root)
		{
			root->filterChildren(polylines,true,CC_TYPES::POLY_LINE);
		}

		if (!polylines.empty())
		{
			ccEntityPickerDlg epDlg(polylines,0,this);
			if (!epDlg.exec())
				return;

			int index = epDlg.getSelectedIndex();
			assert(index >= 0 && index < static_cast<int>(polylines.size()));
			assert(polylines[index]->isA(CC_TYPES::POLY_LINE));
			ccPolyline* poly = static_cast<ccPolyline*>(polylines[index]);
			CCLib::GenericIndexedCloudPersist* vertices = poly->getAssociatedCloud();
			bool mode3D = !poly->is2DMode();

			//viewing parameters (for conversion from 3D to 2D)
			const double* MM = m_associatedWin->getModelViewMatd(); //viewMat
			const double* MP = m_associatedWin->getProjectionMatd(); //projMat
			const GLdouble half_w = static_cast<GLdouble>(m_associatedWin->width())/2;
			const GLdouble half_h = static_cast<GLdouble>(m_associatedWin->height())/2;
			int VP[4];
			m_associatedWin->getViewportArray(VP);

			//force polygonal selection mode
			doSetPolylineSelection();
			m_segmentationPoly->clear();
			m_polyVertices->clear();

			//duplicate polyline 'a minima' (only points and indexes + closed state)
			if (	m_polyVertices->reserve(vertices->size())
				&&	m_segmentationPoly->reserve(poly->size()))
			{
				for (unsigned i=0; i<vertices->size(); ++i)
				{
					CCVector3 P = *vertices->getPoint(i);
					if (mode3D)
					{
						GLdouble xp,yp,zp;
						gluProject(P.x,P.y,P.z,MM,MP,VP,&xp,&yp,&zp);

						P.x = static_cast<PointCoordinateType>(xp-half_w);
						P.y = static_cast<PointCoordinateType>(yp-half_h);
						P.z = 0;
					}
					m_polyVertices->addPoint(P);
				}
				for (unsigned j=0; j<poly->size(); ++j)
					m_segmentationPoly->addPointIndex(poly->getPointGlobalIndex(j));
				
				m_segmentationPoly->setClosed(poly->isClosed());
				if (m_segmentationPoly->isClosed())
				{
					//stop
					m_state &= (~RUNNING);
				}

				if (m_associatedWin)
					m_associatedWin->updateGL();
			}
			else
			{
				ccLog::Error("Not enough memory!");
			}
		}
		else
		{
			ccLog::Error("No polyline in DB!");
		}
	}
}
开发者ID:norbertwenzel,项目名称:CloudCompare,代码行数:80,代码来源:ccGraphicalSegmentationTool.cpp


示例10: exportFacets


//.........这里部分代码省略.........
	}

	//determine the 'global' orientation matrix
	ccGLMatrix oriRotMat;
	oriRotMat.toIdentity();
	if (!useNativeOrientation)
	{
		oriRotMat.getColumn(0)[0] = static_cast<float>(X.x);
		oriRotMat.getColumn(0)[1] = static_cast<float>(X.y);
		oriRotMat.getColumn(0)[2] = static_cast<float>(X.z);
		oriRotMat.getColumn(1)[0] = static_cast<float>(Y.x);
		oriRotMat.getColumn(1)[1] = static_cast<float>(Y.y);
		oriRotMat.getColumn(1)[2] = static_cast<float>(Y.z);
		oriRotMat.getColumn(2)[0] = static_cast<float>(Z.x);
		oriRotMat.getColumn(2)[1] = static_cast<float>(Z.y);
		oriRotMat.getColumn(2)[2] = static_cast<float>(Z.z);
		oriRotMat.invert();

		ccGLMatrix transMat;
		transMat.setTranslation(-C);
		oriRotMat = oriRotMat * transMat;
		oriRotMat.setTranslation(oriRotMat.getTranslationAsVec3D() + C);
	}

	//for each facet
	for (FacetSet::iterator it=facets.begin(); it!=facets.end(); ++it)
	{
		ccFacet* facet = *it;
		ccPolyline* poly = facet->getContour();

		//if necessary, we create a (temporary) new facet
		if (!useNativeOrientation)
		{
			CCLib::GenericIndexedCloudPersist* vertices = poly->getAssociatedCloud();
			if (!vertices || vertices->size() < 3)
				continue;

			//create (temporary) new polyline
			ccPolyline* newPoly = new ccPolyline(*poly);
			ccPointCloud* pc = (newPoly ? dynamic_cast<ccPointCloud*>(newPoly->getAssociatedCloud()) : 0);
			if (pc)
			{
				pc->applyGLTransformation_recursive(&oriRotMat);
			}
			else
			{
				m_app->dispToConsole(QString("Failed to change the orientation of polyline '%1'! (not enough memory)").arg(poly->getName()),ccMainAppInterface::WRN_CONSOLE_MESSAGE);
				continue;
			}

			newPoly->set2DMode(true);
			poly = newPoly;
		}

		toSave.addChild(poly, useNativeOrientation ? ccHObject::DP_NONE : ccHObject::DP_PARENT_OF_OTHER);

		//save associated meta-data as 'shapefile' fields
		{
			//main parameters
			FacetMetaData data;
			GetFacetMetaData(facet, data);

			//horizontal and vertical extensions
			double horizExt = 0, vertExt = 0;
			ComputeFacetExtensions(data.normal,poly,horizExt,vertExt);
开发者ID:Sephrimoth,项目名称:trunk,代码行数:66,代码来源:qFacets.cpp


示例11: SavePolyline

CC_FILE_ERROR SavePolyline(ccPolyline* poly, QFile& file, int32_t& bytesWritten, ESRI_SHAPE_TYPE outputShapeType)
{
	bytesWritten = 0;

	if (!poly)
	{
		assert(false);
		return CC_FERR_BAD_ENTITY_TYPE;
	}

	CCLib::GenericIndexedCloudPersist* vertices = poly->getAssociatedCloud();
	if (!vertices)
		return CC_FERR_BAD_ENTITY_TYPE;

	int32_t realNumPoints = poly->size();
	if (realNumPoints < 3)
		return CC_FERR_BAD_ENTITY_TYPE;

	bool is2D = poly->is2DMode();
	bool isClosed = poly->isClosed();

	ccBBox box = poly->getBB();
	assert(box.isValid());

	//Shape Type
	{
		//Byte 0: Shape Type
		int32_t shapeTypeInt = qToLittleEndian<int32_t>(outputShapeType);
		file.write((const char*)&shapeTypeInt,4);
		bytesWritten += 4;
	}

	//Byte 4: Box
	{
		double xMin = qToLittleEndian<double>(box.minCorner().x);
		double xMax = qToLittleEndian<double>(box.maxCorner().x);
		double yMin = qToLittleEndian<double>(box.minCorner().y);
		double yMax = qToLittleEndian<double>(box.maxCorner().y);
		//The Bounding Box for the PolyLine stored in the order Xmin, Ymin, Xmax, Ymax
		/*Byte  4*/file.write((const char*)&xMin,8);
		/*Byte 12*/file.write((const char*)&yMin,8);
		/*Byte 20*/file.write((const char*)&xMax,8);
		/*Byte 28*/file.write((const char*)&yMax,8);
		bytesWritten += 32;
	}

	//Byte 36: NumParts (The number of parts in the PolyLine)
	{
		int32_t numParts = qToLittleEndian<int32_t>(1);
		file.write((const char*)&numParts,4);
		bytesWritten += 4;
	}

	//Byte 40: NumPoints (The total number of points for all parts)
	int32_t numPoints = realNumPoints;
	if (isClosed)
		numPoints++;
	{
		int32_t numPointsLE = qToLittleEndian<int32_t>(numPoints);
		file.write((const char*)&numPointsLE,4);
		bytesWritten += 4;
	}

	//Byte 44: Parts (An array of length NumParts)
	{
		//for each part, the index of its first point in the points array
		int32_t startIndex = qToLittleEndian<int32_t>(0);
		file.write((const char*)&startIndex,4);
		bytesWritten += 4;
	}

	//for polygons we must list the vertices in the right order:
	//"The neighborhood to the right of an observer walking along
	//the ring in vertex order is the inside of the polygon"
	bool inverseOrder = false;
	if (outputShapeType == SHP_POLYGON || outputShapeType == SHP_POLYGON_Z)
	{
		assert(isClosed);
		assert(numPoints > 2);
		//get bounding box
		ccBBox box = poly->getBB();
		assert(box.isValid());
		//get the two largest (ordered) dimensions (dim1, dim2)
		CCVector3 diag = box.getDiagVec();
		unsigned char minDim = diag.y < diag.x ? 1 : 0;
		if (diag.z < diag.u[minDim])
			minDim = 2;
		unsigned char dim1 = ((minDim+1) % 3);
		unsigned char dim2 = ((minDim+2) % 3);

		if (diag.u[dim1] > 0) //if the polyline is flat, no need to bother ;)
		{
			//look for the top-left-most point in this 'plane'
			int32_t leftMostPointIndex = 0;
			{
				const CCVector3* leftMostPoint = vertices->getPoint(0);
				for (int32_t i=1; i<realNumPoints; ++i)
				{
					const CCVector3* P = vertices->getPoint(i);
					if (P->u[dim1] < leftMostPoint->u[dim1] || (P->u[dim1] == leftMostPoint->u[dim1] && P->u[dim2] < leftMostPoint->u[dim2]))
//.........这里部分代码省略.........
开发者ID:sniperx2,项目名称:trunk,代码行数:101,代码来源:ShpFilter.cpp


示例12: ICP

bool ccRegistrationTools::ICP(	ccHObject* data,
								ccHObject* model,
								ccGLMatrix& transMat,
								double &finalScale,
								double& finalError,
								double minErrorDecrease,
								unsigned maxIterationCount,
								unsigned randomSamplingLimit,
								bool removeFarthestPoints,
								ConvergenceMethod method,
								bool adjustScale,
								bool useDataSFAsWeights/*=false*/,
								bool useModelSFAsWeights/*=false*/,
								QWidget* parent/*=0*/)
{
    //progress bar
    ccProgressDialog pDlg(false,parent);

    //if the 'model' entity is a mesh, we need to sample points on it
    CCLib::GenericIndexedCloudPersist* modelCloud = 0;
    if (model->isKindOf(CC_TYPES::MESH))
    {
        modelCloud = CCLib::MeshSamplingTools::samplePointsOnMesh(ccHObjectCaster::ToGenericMesh(model),s_defaultSampledPointsOnModelMesh,&pDlg);
        if (!modelCloud)
        {
            ccLog::Error("[ICP] Failed to sample points on 'model' mesh!");
            return false;
        }
    }
    else
    {
        modelCloud = ccHObjectCaster::ToGenericPointCloud(model);
    }

    //if the 'data' entity is a mesh, we need to sample points on it
    CCLib::GenericIndexedCloudPersist* dataCloud = 0;
    if (data->isKindOf(CC_TYPES::MESH))
    {
        dataCloud = CCLib::MeshSamplingTools::samplePointsOnMesh(ccHObjectCaster::ToGenericMesh(data),s_defaultSampledPointsOnDataMesh,&pDlg);
        if (!dataCloud)
        {
            ccLog::Error("[ICP] Failed to sample points on 'data' mesh!");
            return false;
        }
    }
    else
    {
        dataCloud = ccHObjectCaster::ToGenericPointCloud(data);
    }

    //we activate a temporary scalar field for registration distances computation
	CCLib::ScalarField* dataDisplayedSF = 0;
    int oldDataSfIdx=-1, dataSfIdx=-1;

    //if the 'data' entity is a real ccPointCloud, we can even create a temporary SF for registration distances
    if (data->isA(CC_TYPES::POINT_CLOUD))
    {
        ccPointCloud* pc = static_cast<ccPointCloud*>(data);
		dataDisplayedSF = pc->getCurrentDisplayedScalarField();
        oldDataSfIdx = pc->getCurrentInScalarFieldIndex();
        dataSfIdx = pc->getScalarFieldIndexByName(REGISTRATION_DISTS_SF);
        if (dataSfIdx < 0)
            dataSfIdx = pc->addScalarField(REGISTRATION_DISTS_SF);
        if (dataSfIdx >= 0)
            pc->setCurrentScalarField(dataSfIdx);
        else
            ccLog::Warning("[ICP] Couldn't create temporary scalar field! Not enough memory?");
    }
    else
    {
        dataCloud->enableScalarField();
    }

    //parameters
    CCLib::PointProjectionTools::Transformation transform;

	CCLib::ScalarField* modelWeights = 0;
	if (useModelSFAsWeights)
	{
		if (modelCloud == dynamic_cast<CCLib::GenericIndexedCloudPersist*>(model) && model->isA(CC_TYPES::POINT_CLOUD))
		{
			ccPointCloud* pc = static_cast<ccPointCloud*>(model);
			modelWeights = pc->getCurrentDisplayedScalarField();
			if (!modelWeights)
				ccLog::Warning("[ICP] 'useDataSFAsWeights' is true but model has no displayed scalar field!");
		}
		else
		{
			ccLog::Warning("[ICP] 'useDataSFAsWeights' is true but only point clouds scalar fields can be used as weights!");
		}
	}

	CCLib::ScalarField* dataWeights = 0;
	if (useDataSFAsWeights)
	{
		if (!dataDisplayedSF)
		{
			if (dataCloud == (CCLib::GenericIndexedCloudPersist*)data && data->isA(CC_TYPES::POINT_CLOUD))
				ccLog::Warning("[ICP] 'useDataSFAsWeights' is true but data has no displayed scalar field!");
			else
//.........这里部分代码省略.........
开发者ID:eile,项目名称:trunk,代码行数:101,代码来源:ccRegistrationTools.cpp


示例13: doExportSegmentationPolyline

void ccGraphicalSegmentationTool::doExportSegmentationPolyline()
{
	MainWindow* mainWindow = MainWindow::TheInstance();
	if (mainWindow && m_segmentationPoly)
	{
		bool mode2D = false;
#ifdef ALLOW_2D_OR_3D_EXPORT
		QMessageBox messageBox(0);
		messageBox.setWindowTitle("Choose export type");
		messageBox.setText("Export polyline in:\n - 2D (with coordinates relative to the screen)\n - 3D (with coordinates relative to the segmented entities)");
		QPushButton* button2D = new QPushButton("2D");
		QPushButton* button3D = new QPushButton("3D");
		messageBox.addButton(button2D,QMessageBox::AcceptRole);
		messageBox.addButton(button3D,QMessageBox::AcceptRole);
		messageBox.addButton(QMessageBox::Cancel);
		messageBox.setDefaultButton(button3D);
		messageBox.exec();
		if (messageBox.clickedButton() == messageBox.button(QMessageBox::Cancel))
		{
			//process cancelled by user
			return;
		}
		mode2D = (messageBox.clickedButton() == button2D);
#endif

		ccPolyline* poly = new ccPolyline(*m_segmentationPoly);

		//if the polyline is 2D and we export the polyline in 3D, we must project its vertices
		if (!mode2D)
		{
			//get current display parameters
			ccGLCameraParameters camera;
			m_associatedWin->getGLCameraParameters(camera);
			const double half_w = camera.viewport[2] / 2.0;
			const double half_h = camera.viewport[3] / 2.0;

			//project the 2D polyline in 3D
			CCLib::GenericIndexedCloudPersist* vertices = poly->getAssociatedCloud();
			ccPointCloud* verticesPC = dynamic_cast<ccPointCloud*>(vertices);
			if (verticesPC)
			{
				for (unsigned i=0; i<vertices->size(); ++i)
				{
					CCVector3* Pscreen = const_cast<CCVector3*>(verticesPC->getPoint(i));
					CCVector3d Pd(half_w + Pscreen->x, half_h + Pscreen->y, 0/*Pscreen->z*/);
					CCVector3d Q3D;
					camera.unproject(Pd, Q3D);
					*Pscreen = CCVector3::fromArray(Q3D.u);
				}
				verticesPC->invalidateBoundingBox();
			}
			else
			{
				assert(false);
				ccLog::Warning("[Segmentation] Failed to convert 2D polyline to 3D! (internal inconsistency)");
				mode2D = false;
			}
		}
		
		QString polyName = QString("Segmentation polyline #%1").arg(++s_polylineExportCount);
		poly->setName(polyName);
		poly->setEnabled(false); //we don't want it to appear while the segmentation mode is enabled! (anyway it's 2D only...)
		poly->set2DMode(mode2D);
		poly->setColor(ccColor::yellow); //we use a different color so as to differentiate them from the active polyline!

		//save associated viewport
		cc2DViewportObject* viewportObject = new cc2DViewportObject(polyName + QString(" viewport"));
		viewportObject->setParameters(m_associatedWin->getViewportParameters());
		viewportObject->setDisplay(m_associatedWin);
		poly->addChild(viewportObject);

		mainWindow->addToDB(poly,false,false,false);
		ccLog::Print(QString("[Segmentation] Polyline exported (%1 vertices)").arg(poly->size()));
	}
}
开发者ID:FrankHXW,项目名称:trunk,代码行数:75,代码来源:ccGraphicalSegmentationTool.cpp


示例14: doActionUseExistingPolyline

void ccGraphicalSegmentationTool::doActionUseExistingPolyline()
{
	MainWindow* mainWindow = MainWindow::TheInstance();
	if (mainWindow)
	{
		ccHObject* root = mainWindow->dbRootObject();
		ccHObject::Container polylines;
		if (root)
		{
			root->filterChildren(polylines,true,CC_TYPES::POLY_LINE);
		}

		if (!polylines.empty())
		{
			ccEntityPickerDlg epDlg(polylines,false,0,this);
			if (!epDlg.exec())
				return;

			int index = epDlg.getSelectedIndex();
			assert(index >= 0 && index < static_cast<int>(polylines.size()));
			assert(polylines[index]->isA(CC_TYPES::POLY_LINE));
			ccPolyline* poly = static_cast<ccPolyline*>(polylines[index]);

			//look for an asociated viewport
			ccHObject::Container viewports;
			if (poly->filterChildren(viewports,false,CC_TYPES::VIEWPORT_2D_OBJECT,true) == 1)
			{
				//shall we apply this viewport?
				if (QMessageBox::question(	m_associatedWin ? m_associatedWin->asWidget() : 0,
											"Associated viewport",
											"The selected polyline has an associated viewport: do you want to apply it?",
											QMessageBox::Yes,
											QMessageBox::No) == QMessageBox::Yes)
				{
					m_associatedWin->setViewportParameters(static_cast<cc2DViewportObject*>(viewports.front())->getParameters());
					m_associatedWin->redraw(false);
				}
			}

			CCLib::GenericIndexedCloudPersist* vertices = poly->getAssociatedCloud();
			bool mode3D = !poly->is2DMode();

			//viewing parameters (for conversion from 3D to 2D)
			ccGLCameraParameters camera;
			m_associatedWin->getGLCameraParameters(camera);
			const double half_w = camera.viewport[2] / 2.0;
			const double half_h = camera.viewport[3] / 2.0;

			//force polygonal selection mode
			doSetPolylineSelection();
			m_segmentationPoly->clear();
			m_polyVertices->clear();
			allowPolylineExport(false);

			//duplicate polyline 'a minima' (only points and indexes + closed state)
			if (	m_polyVertices->reserve(vertices->size())
				&&	m_segmentationPoly->reserve(poly->size()))
			{
				for (unsigned i=0; i<vertices->size(); ++i)
				{
					CCVector3 P = *vertices->getPoint(i);
					if (mode3D)
					{
						CCVector3d Q2D;
						camera.project(P, Q2D);

						P.x = static_cast<PointCoordinateType>(Q2D.x-half_w);
						P.y = static_cast<PointCoordinateType>(Q2D.y-half_h);
						P.z = 0;
					}
					m_polyVertices->addPoint(P);
				}
				for (unsigned j=0; j<poly->size(); ++j)
				{
					m_segmentationPoly->addPointIndex(poly->getPointGlobalIndex(j));
				}
				
				m_segmentationPoly->setClosed(poly->isClosed());
				if (m_segmentationPoly->isClosed())
				{
					//stop
					m_state &= (~RUNNING);
					allowPolylineExport(m_segmentationPoly->size() > 1);
				}

				if (m_associatedWin)
					m_associatedWin->redraw(true, false);
			}
			else
			{
				ccLog::Error("Not enough memory!");
			}
		}
		else
		{
			ccLog::Error("No polyline in DB!");
		}
	}
}
开发者ID:FrankHXW,项目名称:trunk,代码行数:99,代码来源:ccGraphicalSegmentationTool.cpp



注:本文中的cclib::GenericIndexedCloudPersist类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C++ cclib::ReferenceCloud类代码示例发布时间:2022-05-31
下一篇:
C++ cchobject::Container类代码示例发布时间:2022-05-31
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap