• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

C++ cv::Mat类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C++中cv::Mat的典型用法代码示例。如果您正苦于以下问题:C++ Mat类的具体用法?C++ Mat怎么用?C++ Mat使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Mat类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。

示例1: QDialog

PowertfDialog::PowertfDialog(cv::Mat& img, QWidget *parent)
    : QDialog(parent)
{
    r = 1;
    c = 1;
    b = 0;
    img.copyTo(image);
    pimage = &img;

    rSlider = new QSlider(Qt::Horizontal);
    rSlider->setRange(0,10);
    rSlider->setValue(r);
    cSlider = new QSlider(Qt::Horizontal);
    cSlider->setRange(0,10);
    cSlider->setValue(c);
    bSlider = new QSlider(Qt::Horizontal);
    bSlider->setRange(0,10);
    bSlider->setValue(b);

    rSBx = new QSpinBox();
    rSBx->setRange(0,10);
    rSBx->setValue(r);
    cSBx = new QSpinBox();
    cSBx->setRange(0,10);
    cSBx->setValue(c);
    bSBx = new QSpinBox();
    bSBx->setRange(0,10);
    bSBx->setValue(b);

    connect(rSlider,SIGNAL(valueChanged(int)),this,SLOT(rChanged(int)));
    connect(cSlider,SIGNAL(valueChanged(int)),this,SLOT(cChanged(int)));
    connect(bSlider,SIGNAL(valueChanged(int)),this,SLOT(bChanged(int)));
    connect(rSlider,SIGNAL(valueChanged(int)),rSBx,SLOT(setValue(int)));
    connect(cSlider,SIGNAL(valueChanged(int)),cSBx,SLOT(setValue(int)));
    connect(bSlider,SIGNAL(valueChanged(int)),bSBx,SLOT(setValue(int)));

    connect(rSBx,SIGNAL(valueChanged(int)),this,SLOT(rChanged(int)));
    connect(cSBx,SIGNAL(valueChanged(int)),this,SLOT(cChanged(int)));
    connect(bSBx,SIGNAL(valueChanged(int)),this,SLOT(bChanged(int)));
    connect(rSBx,SIGNAL(valueChanged(int)),rSlider,SLOT(setValue(int)));
    connect(cSBx,SIGNAL(valueChanged(int)),cSlider,SLOT(setValue(int)));
    connect(bSBx,SIGNAL(valueChanged(int)),bSlider,SLOT(setValue(int)));

    rLabel = new QLabel(tr("r"));
    cLabel = new QLabel(tr("c"));
    bLabel = new QLabel(tr("b"));

    okButton = new QPushButton(tr("&OK"));
    okButton->setDefault(true);
    okButton->setEnabled(true);
    connect(okButton, SIGNAL(clicked()), this, SLOT(okClicked()));

    closeButton = new QPushButton(tr("&Close"));
    connect(closeButton, SIGNAL(clicked()), this, SLOT(closePowertf()));

    QHBoxLayout *rLayout = new QHBoxLayout;
    rLayout->addWidget(rLabel);
    rLayout->addWidget(rSlider);
    rLayout->addWidget(rSBx);
    QHBoxLayout *cLayout = new QHBoxLayout;
    cLayout->addWidget(cLabel);
    cLayout->addWidget(cSlider);
    cLayout->addWidget(cSBx);
    QHBoxLayout *bLayout = new QHBoxLayout;
    bLayout->addWidget(bLabel);
    bLayout->addWidget(bSlider);
    bLayout->addWidget(bSBx);

    QVBoxLayout *leftLayout = new QVBoxLayout;
    leftLayout->addLayout(rLayout);
    leftLayout->addLayout(cLayout);
    leftLayout->addLayout(bLayout);
    
    QVBoxLayout *rightLayout = new QVBoxLayout;
    rightLayout->addWidget(okButton);
    rightLayout->addWidget(closeButton);
    rightLayout->addStretch();

    QHBoxLayout *mainLayout = new QHBoxLayout;
    mainLayout->addLayout(leftLayout);
    mainLayout->addLayout(rightLayout);
    setLayout(mainLayout);

    setWindowTitle(tr("Power Tranform"));
    setFixedHeight(sizeHint().height());
}
开发者ID:JuannyWang,项目名称:opencv_study,代码行数:86,代码来源:powertf_dialog.cpp


示例2: calVDisparity

//general processing function of UVDisparity based function
cv::Mat UVDisparity::Process(cv::Mat& img_L, cv::Mat& disp_sgbm,
                             VisualOdometryStereo& vo, cv::Mat& xyz,
                             cv::Mat& roi_mask, cv::Mat& ground_mask,
                             double& pitch1, double& pitch2)
{
    cv::Mat mask_moving;
    calVDisparity(disp_sgbm,xyz);

    //sequentially estimate pitch angles by Kalman Filter
    vector<cv::Mat> pitch_measures;

    pitch_measures = Pitch_Classify(xyz,ground_mask);
    pitch1_KF->predict();
    pitch1_KF->correct(pitch_measures[0]);

    pitch2_KF->predict();
    pitch2_KF->correct(pitch_measures[1]);

    pitch1 = pitch_measures[0].at<float>(0);
    pitch2 = pitch_measures[1].at<float>(0);


    //Improve 3D reconstruction results by pitch angles
    correct3DPoints(xyz,roi_,pitch1_KF->statePost.at<float>(0),pitch2_KF->statePost.at<float>(0));

    //set image ROI according to ROI3D (ROI within a 3D space)
    setImageROI(xyz, roi_mask);

    //filter inliers and outliers
    filterInOut(img_L,roi_mask,disp_sgbm,vo,pitch1);

    //calculate Udisparity image
    calUDisparity(disp_sgbm,xyz,roi_mask,ground_mask);

    //using sigmoid function to adjust Udisparity image for segmentation
    double scale = 0.02, range = 32;
    adjustUdisIntense(scale,range);

     //Find all possible segmentation
     findAllMasks(vo,img_L,xyz,roi_mask);

    if(masks_.size()>0)
    {
       //merge overlapped masks
       mergeMasks();

       //improve the segments by inliers
       verifyByInliers(vo,img_L);
     }

   //perform segmentation in disparity image
   segmentation(disp_sgbm,img_L,roi_mask,mask_moving);

   //demonstration
   cv::Mat img_show;
   img_L.copyTo(img_show,mask_moving);
   cv::imshow("moving",img_show);
   cv::waitKey(1);

   masks_.clear();
   return mask_moving;
}
开发者ID:jfqiu-git,项目名称:keti,代码行数:63,代码来源:uvdisparity.cpp


示例3: dominantTransforms

static void dominantTransforms(const cv::Mat &img, std::vector <cv::Matx33f> &transforms,
                               const int nTransform, const int psize)
{
    /** Walsh-Hadamard Transformation **/

    std::vector <cv::Mat> channels;
    cv::split(img, channels);

    int cncase = std::max(img.channels() - 2, 0);
    const int np[] = {cncase == 0 ? 12 : (cncase == 1 ? 16 : 10),
                      cncase == 0 ? 12 : (cncase == 1 ? 04 : 02),
                      cncase == 0 ? 00 : (cncase == 1 ? 04 : 02),
                      cncase == 0 ? 00 : (cncase == 1 ? 00 : 10)};

    for (int i = 0; i < img.channels(); ++i)
        rgb2whs(channels[i], channels[i], np[i], psize);

    cv::Mat whs; // Walsh-Hadamard series
    cv::merge(channels, whs);

    KDTree <float, 24> kdTree(whs, 16, 32);
    std::vector <int> annf( whs.total(), 0 );

    /** Propagation-assisted kd-tree search **/

    for (int i = 0; i < whs.rows; ++i)
        for (int j = 0; j < whs.cols; ++j)
        {
            double dist = std::numeric_limits <double>::max();
            int current = i*whs.cols + j;

            int dy[] = {0, 1, 0}, dx[] = {0, 0, 1};
            for (int k = 0; k < int( sizeof(dy)/sizeof(int) ); ++k)
                if (i - dy[k] >= 0 && j - dx[k] >= 0)
                {
                    int neighbor = (i - dy[k])*whs.cols + (j - dx[k]);
                    int leafIdx = k == 0 ? neighbor :
                        annf[neighbor] + dy[k]*whs.cols + dx[k];
                    kdTree.updateDist(leafIdx, current,
                               annf[i*whs.cols + j], dist);
                }
        }

    /** Local maxima extraction **/

    cv::Mat_<double> annfHist(2*whs.rows - 1, 2*whs.cols - 1, 0.0),
                    _annfHist(2*whs.rows - 1, 2*whs.cols - 1, 0.0);
    for (size_t i = 0; i < annf.size(); ++i)
        ++annfHist( (annf[i] - int(i))/whs.cols + whs.rows - 1,
                    (annf[i] - int(i))%whs.cols + whs.cols - 1 );

    cv::GaussianBlur( annfHist, annfHist,
        cv::Size(0, 0), std::sqrt(2.0), 0.0, cv::BORDER_CONSTANT);
    cv::dilate( annfHist, _annfHist,
        cv::Matx<uchar, 9, 9>::ones() );

    std::vector < std::pair<double, int> > amount;
    std::vector <cv::Point2i> shiftM;

    for (int i = 0, t = 0; i < annfHist.rows; ++i)
    {
        double  *pAnnfHist =  annfHist.ptr<double>(i);
        double *_pAnnfHist = _annfHist.ptr<double>(i);

        for (int j = 0; j < annfHist.cols; ++j)
            if ( pAnnfHist[j] != 0 && pAnnfHist[j] == _pAnnfHist[j] )
            {
                amount.push_back( std::make_pair(pAnnfHist[j], t++) );
                shiftM.push_back( cv::Point2i(j - whs.cols + 1,
                                              i - whs.rows + 1) );
            }
    }

    std::partial_sort( amount.begin(), amount.begin() + nTransform,
        amount.end(), std::greater< std::pair<double, int> >() );

    transforms.resize(nTransform);
    for (int i = 0; i < nTransform; ++i)
    {
        int idx = amount[i].second;
        transforms[i] = cv::Matx33f(1, 0, float(shiftM[idx].x),
                                    0, 1, float(shiftM[idx].y),
                                    0, 0,          1          );
    }
}
开发者ID:23pointsNorth,项目名称:opencv_contrib,代码行数:85,代码来源:annf.hpp


示例4: rescaleGrayLevelMat

/*
 * objective : get the gray level map of the input image and rescale it to the range [0-255]
 */
 static void rescaleGrayLevelMat(const cv::Mat &inputMat, cv::Mat &outputMat, const float histogramClippingLimit)
 {

     // adjust output matrix wrt the input size but single channel
     std::cout<<"Input image rescaling with histogram edges cutting (in order to eliminate bad pixels created during the HDR image creation) :"<<std::endl;
     //std::cout<<"=> image size (h,w,channels) = "<<inputMat.size().height<<", "<<inputMat.size().width<<", "<<inputMat.channels()<<std::endl;
     //std::cout<<"=> pixel coding (nbchannel, bytes per channel) = "<<inputMat.elemSize()/inputMat.elemSize1()<<", "<<inputMat.elemSize1()<<std::endl;

     // rescale between 0-255, keeping floating point values
     cv::normalize(inputMat, outputMat, 0.0, 255.0, cv::NORM_MINMAX);

     // extract a 8bit image that will be used for histogram edge cut
     cv::Mat intGrayImage;
     if (inputMat.channels()==1)
     {
         outputMat.convertTo(intGrayImage, CV_8U);
     }else
     {
         cv::Mat rgbIntImg;
         outputMat.convertTo(rgbIntImg, CV_8UC3);
         cv::cvtColor(rgbIntImg, intGrayImage, cv::COLOR_BGR2GRAY);
     }

     // get histogram density probability in order to cut values under above edges limits (here 5-95%)... usefull for HDR pixel errors cancellation
     cv::Mat dst, hist;
     int histSize = 256;
     calcHist(&intGrayImage, 1, 0, cv::Mat(), hist, 1, &histSize, 0);
     cv::Mat normalizedHist;
     normalize(hist, normalizedHist, 1, 0, cv::NORM_L1, CV_32F); // normalize histogram so that its sum equals 1

     double min_val, max_val;
     minMaxLoc(normalizedHist, &min_val, &max_val);
     //std::cout<<"Hist max,min = "<<max_val<<", "<<min_val<<std::endl;

     // compute density probability
     cv::Mat denseProb=cv::Mat::zeros(normalizedHist.size(), CV_32F);
     denseProb.at<float>(0)=normalizedHist.at<float>(0);
     int histLowerLimit=0, histUpperLimit=0;
     for (int i=1;i<normalizedHist.size().height;++i)
     {
         denseProb.at<float>(i)=denseProb.at<float>(i-1)+normalizedHist.at<float>(i);
         //std::cout<<normalizedHist.at<float>(i)<<", "<<denseProb.at<float>(i)<<std::endl;
         if ( denseProb.at<float>(i)<histogramClippingLimit)
             histLowerLimit=i;
         if ( denseProb.at<float>(i)<1-histogramClippingLimit)
             histUpperLimit=i;
     }
     // deduce min and max admitted gray levels
     float minInputValue = (float)histLowerLimit/histSize*255;
     float maxInputValue = (float)histUpperLimit/histSize*255;

     std::cout<<"=> Histogram limits "
             <<"\n\t"<<histogramClippingLimit*100<<"% index = "<<histLowerLimit<<" => normalizedHist value = "<<denseProb.at<float>(histLowerLimit)<<" => input gray level = "<<minInputValue
             <<"\n\t"<<(1-histogramClippingLimit)*100<<"% index = "<<histUpperLimit<<" => normalizedHist value = "<<denseProb.at<float>(histUpperLimit)<<" => input gray level = "<<maxInputValue
             <<std::endl;
     //drawPlot(denseProb, "input histogram density probability", histLowerLimit, histUpperLimit);
     drawPlot(normalizedHist, "input histogram", histLowerLimit, histUpperLimit);

     // rescale image range [minInputValue-maxInputValue] to [0-255]
     outputMat-=minInputValue;
     outputMat*=255.0/(maxInputValue-minInputValue);
     // cut original histogram and back project to original image
     cv::threshold( outputMat, outputMat, 255.0, 255.0, 2 ); //THRESH_TRUNC, clips values above 255
     cv::threshold( outputMat, outputMat, 0.0, 0.0, 3 ); //THRESH_TOZERO, clips values under 0

 }
开发者ID:Belial2010,项目名称:opencv,代码行数:69,代码来源:OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp


示例5: float

bool CaffeFeatExtractor<Dtype>::extract_singleFeat_1D(cv::Mat &image, vector<Dtype> &features, float (&times)[2])
{

    times[0] = 0.0f;
    times[1] = 0.0f;

    // Check input image
    if (image.empty())
    {
        std::cout << "CaffeFeatExtractor::extract_singleFeat_1D(): empty imMat!" << std::endl;
        return false;
    }

    // Start timing
    cudaEvent_t startPrep, stopPrep, startNet, stopNet;
    if (timing)
    {
        cudaEventCreate(&startPrep);
        cudaEventCreate(&startNet);
        cudaEventCreate(&stopPrep);
        cudaEventCreate(&stopNet);
        cudaEventRecord(startPrep, NULL);
        cudaEventRecord(startNet, NULL);
    }

    // Prepare Caffe

    // Set the GPU/CPU mode for Caffe (here in order to be thread-safe)
    if (gpu_mode)
    {
        Caffe::set_mode(Caffe::GPU);
        Caffe::SetDevice(device_id);
    }
    else
    {
        Caffe::set_mode(Caffe::CPU);
    }

    // Initialize labels to zero
    int label = 0;

    // Get pointer to data layer to set the input
    caffe::shared_ptr<MemoryDataLayer<Dtype> > memory_data_layer = boost::dynamic_pointer_cast<caffe::MemoryDataLayer<Dtype> >(feature_extraction_net->layers()[0]);

    // Set batch size to 1
    if (memory_data_layer->batch_size()!=1)
    {
        memory_data_layer->set_batch_size(1);
        std::cout << "CaffeFeatExtractor::extract_singleFeat_1D(): BATCH SIZE = " << memory_data_layer->batch_size() << std::endl;
    }

    // Image preprocessing
    // The image passed to AddMatVector must be same size as the mean image
    // If not, it is resized:
    // if it is downsampled, an anti-aliasing Gaussian Filter is applied
    if (image.rows != mean_height || image.cols != mean_height)
    {
        if (image.rows > mean_height || image.cols > mean_height)
        {
            cv::resize(image, image, cv::Size(mean_height, mean_width), 0, 0, CV_INTER_LANCZOS4);
        }
        else
        {
            cv::resize(image, image, cv::Size(mean_height, mean_width), 0, 0, CV_INTER_LINEAR);
        }
    }

    memory_data_layer->AddMatVector(vector<cv::Mat>(1, image),vector<int>(1,label));

    size_t num_features = blob_names.size();
    if(num_features!=1)
    {
        std::cout << "CaffeFeatExtractor::extract_singleFeat_1D(): Error! The list of features to be extracted has not size one!" << std::endl;
        return false;
    }

    if (timing)
    {
        // Record the stop event
        cudaEventRecord(stopPrep, NULL);

        // Wait for the stop event to complete
        cudaEventSynchronize(stopPrep);

        cudaEventElapsedTime(times, startPrep, stopPrep);
    }


    // Run network and retrieve features!

    // depending on your net's architecture, the blobs will hold accuracy and/or labels, etc
    std::vector<Blob<Dtype>*> results = feature_extraction_net->Forward();

    const caffe::shared_ptr<Blob<Dtype> > feature_blob = feature_extraction_net->blob_by_name(blob_names[0]);

    int batch_size = feature_blob->num(); // should be 1
    if (batch_size!=1)
    {
        std::cout << "CaffeFeatExtractor::extract_singleFeat_1D(): Error! Retrieved more than one feature, exiting..." << std::endl;
        return -1;
//.........这里部分代码省略.........
开发者ID:GiuliaP,项目名称:caffe_feat_extraction,代码行数:101,代码来源:CaffeFeatExtractor.hpp


示例6: baseGraph

/**
@brief 色相だけのヒストグラムを計算する
@param src ヒストグラムを計算する画像
*/
void HIST::calcHistgramHue(cv::Mat &src)
{
	if(src.data == NULL)
		return;
	
	// グラフのデータ間の距離
	stepH = (double)ui.histgramH->width()/180;

	cv::cvtColor(src, src, cv::COLOR_BGR2HSV);
	int count[180];
	int max = 0;

	// 初期化
	for (int i = 0; i < 180; i++)
		count[i] = 0;

	// 色相の各値の個数を取得
	for (int j = 0; j < src.cols; j++)
		for (int i = 0; i < src.rows; i++)
			// ほぼ白(彩度≒0)は無視
				if(src.data[i * src.step + j * src.elemSize() + 1] > 3)
					count[src.data[i * src.step + j * src.elemSize()]]++;
	cv::cvtColor(src, src, cv::COLOR_HSV2BGR);

	// スケーリング定数(一番多い個数)の取得
	for (int i = 0; i < 180; i++)
		if(max < count[i])
			max = count[i];

	// スケーリング
	double histgram[180];
	for (int i = 0; i < 180; i++)
		histgram[i] = (double)count[i] / max * 200;


	/** 簡易グラフ作成 **/
	int gWidth = 180 * stepH;
	int gHeight = 200;
	// 格子画像
	cv::Mat baseGraph(gHeight, gWidth, CV_8UC3, cv::Scalar(255, 255, 255));
	// 色相のヒストグラム画像
	cv::Mat hueGraph(gHeight, gWidth, CV_8UC3, cv::Scalar(255, 255, 255));
	// 上記2つを乗算ブレンディングした最終的に描画する画像
	cv::Mat graph(gHeight, gWidth, CV_8UC3, cv::Scalar(255, 255, 255));

	cv::cvtColor(hueGraph, hueGraph, cv::COLOR_BGR2HSV);
	for (int j = 0; j < hueGraph.rows; j++){
		for (int i = 0; i < hueGraph.cols; i++){
			hueGraph.data[j * hueGraph.step + i * hueGraph.elemSize() + 0] = (int)((double)i/stepH);
			hueGraph.data[j * hueGraph.step + i * hueGraph.elemSize() + 1] = 220;
			hueGraph.data[j * hueGraph.step + i * hueGraph.elemSize() + 2] = 180;
		}
	}
	cv::cvtColor(hueGraph, hueGraph, cv::COLOR_HSV2BGR);
	// 横のメモリ
	for (int i = 0; i < 20; i++)
		if(!(i%4))
			cv::line(baseGraph, cv::Point(0, i*10), cv::Point(gWidth, i*10), cv::Scalar(180, 180, 180), 2);
		else
			cv::line(baseGraph, cv::Point(0, i*10), cv::Point(gWidth, i*10), cv::Scalar(200, 200, 200), 1);
	// 色相のグラフ
	for (int i = 0; i < 180; i++)
		cv::line(hueGraph, cv::Point((int)(i*stepH), 0), cv::Point((int)(i*stepH), (int)histgram[i]), cv::Scalar(180, 180, 180), 2);
	// 折れ線
	for (int i = 0; i < 180; i++)
		cv::line(hueGraph, cv::Point((int)(i*stepH), (int)histgram[i]), cv::Point((int)((i+1)*stepH), (int)histgram[i+1]), cv::Scalar(90, 90, 90), 2, CV_AA);
	// 合成
	blend(baseGraph, hueGraph, graph, blendType::MULTI);
	// 上下を反転
	cv::flip(graph, graph, 0);

	drawForQtLabel(graph, ui.histgramH, false);
}
开发者ID:sensq,项目名称:home,代码行数:77,代码来源:hist.cpp


示例7: ParallaxErrorAnalysis_GradientPatch

bool ParallaxErrorAnalysis_GradientPatch(const cv::Mat& img1,const shape& img1_shp, const cv::Mat& img2, const shape& img2_shp, const cv::Mat& img2_original,
        const cv::Mat& H, const cv::Size2i& img_size ,double& res_error)
{
    vector<cv::Point2f> overlap_points;


    for(int r = 0 ; r < img_size.height; r++)
    {
        for(int c = 0; c < img_size.width; c++)
        {
            shape t_img1_shape = img1_shp;
            shape t_img2_shape = img2_shp;
            cv::Point2f t_point(c, r);
            if(t_img1_shape.isInShape(c, r) && t_img2_shape.isInShape(c, r) )
            {
                // 记下这些点
                overlap_points.push_back(t_point);
            }
        }
    }

    // 找到这些点在 img2_original 上的对应点
    cv::Mat Hn = H.inv();
    vector<cv::Point2f> correPoints_ori(overlap_points.size(),*new cv::Point2f);
    cv::perspectiveTransform(overlap_points, correPoints_ori, Hn); // 两个参数都要是 vector<cv::Point2f> f 不能是 i

    //检测有没有越界的
    /*ofstream Dout("2.txt",ios::out);
    for(int i = 0; i < correPoints_ori.size(); i++)
    {
    	if(correPoints_ori[i].x < 0 || correPoints_ori[i].x > img2_original.cols
    		|| correPoints_ori[i].y < 0 || correPoints_ori[i].y > img2_original.rows)
    	{

    		Dout<< correPoints_ori[i].x << " "<<correPoints_ori[i].y << endl;
    	}
    }
    Dout.clear();
    Dout.close();*/

    // 计算 error
    res_error = 0;
    cv::Mat img_blend;
    vector<cv::Mat> imgs;
    vector<shape> shapes;
    imgs.push_back(img1);
    imgs.push_back(img2);
    shapes.push_back(img1_shp);
    shapes.push_back(img2_shp);
    blending_all(imgs, shapes, img_size, img_blend);

    // 求 Iij 和 Ij 的 Gradient 图
    cv::Mat img_blend_G;
    cv::Mat img2_original_G;
    gradientGray(img_blend, img_blend_G);
    gradientGray(img2_original, img2_original_G);

    // test 测试 到底有哪些点 不一样。
    vector<cv::Point2f> err_points_img2;
    vector<uchar> err_img2;
    // Gradient 图求 error
    double res = 0;
    for(int i = 0; i < overlap_points.size(); i++)
    {
        uchar Gray1 = img_blend_G.at<uchar>(overlap_points[i]);
        uchar Gray2 = img2_original_G.at<uchar>(correPoints_ori[i]);
        int tr = abs(Gray1 - Gray2);
        //if(tr != 0) // 很多是相差就1,这样基本一样的
        //{
        //	res += tr;
        //}
        if(tr >= 5) // 很多是相差就1,这样基本一样的
        {
            res += tr;
            err_points_img2.push_back(correPoints_ori[i]);
            err_img2.push_back(tr);
        }
    }

    res_error = res;

    // 测试的图
    // 新建一张 img_size 的黑色图
    IplImage* st_img = cvCreateImage(img2_original.size(), IPL_DEPTH_8U, 3);
    for(int i = 0; i < st_img->height; i++)
    {
        uchar *ptrImage = (uchar*)(st_img->imageData + i * st_img->widthStep);
        for (int j = 0; j < st_img->width; j++)
        {
            ptrImage[3 * j + 0]=0;
            ptrImage[3 * j + 1]=0;
            ptrImage[3 * j + 2]=0;
        }
    }
    cv::Mat test_img = st_img;
    for(int i = 0; i < err_points_img2.size(); i++)
    {
        test_img.at<Vec3b>(err_points_img2[i])[2] = err_img2[i];
    }
    imwrite("error_ori.jpg",img2_original);
//.........这里部分代码省略.........
开发者ID:XavierCao,项目名称:OpenCVtest,代码行数:101,代码来源:Homo1.cpp


示例8: rotateMat

//void CutoutImage::rotateMat (const cv::Mat srcMat ,cv::Mat &dstMat,const cv::Mat colorMat)
void CutoutImage::rotateMat (const cv::Mat srcMat ,cv::Mat &dstMat,const cv::Mat colorMat, const cv::Mat wholeImage, cv::Mat &wholeImageCut)
{
    std::vector<std::vector<cv::Point>> contours;
    std::vector<cv::Vec4f> lineVector;
    cv::Mat aMat = srcMat.clone();
    cv::findContours(aMat, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
    cv::Mat showMat = cv::Mat(aMat.rows,aMat.cols,CV_8UC3,cv::Scalar(0,0,0));
    //dstMat = aMat.clone();
    dstMat = cv::Mat(srcMat.size(), CV_8UC4, cv::Scalar(0,0,0,0));
    std::vector<cv::Rect> nailRect;
    cv::Mat wholeImageRotate;
    for(int i = 0;i<(int)contours.size();i++)
    {
        if(contours[i].size() > 5)
        {
            cv::RotatedRect tmp = cv::minAreaRect(contours[i]);
            //ellipses.push_back(temp);
            cv::drawContours(showMat, contours, i, cv::Scalar(255,0,0), 1, 8);
            cv::ellipse(showMat, tmp, cv::Scalar(0,255,255), 2, 8);
            //cv::line(<#cv::Mat &img#>, <#Point pt1#>, <#Point pt2#>, <#const Scalar &color#>)
            cv::rectangle(showMat, tmp.boundingRect(), cv::Scalar(255,255,0),1,8);
            //imshow("Ellipses", showMat);
            float rotAngle = tmp.angle;
            tmp.angle = 0;
            //cv::circle(showMat,  cv::Point(tmp.boundingRect().x,tmp.boundingRect().y) , 2, cv::Scalar(0,0,255));
            if(tmp.boundingRect().width > tmp.boundingRect().height)
            {
                tmp.angle = 90;
                rotAngle = rotAngle - 90;
            }
            cv::rectangle(showMat, tmp.boundingRect(), cv::Scalar(255,255,0),1,8);
            nailRect.push_back(tmp.boundingRect());
            cv::ellipse(showMat, tmp, cv::Scalar(255,255,255), 2, 8);
            //imshow("Ellipses", showMat);
            //cv::Mat rotMat = cv::Mat(2,3,CV_32FC1);
            cv::Mat rotMat =   cv::getRotationMatrix2D(tmp.center,rotAngle, 1);
            //cv::transform(srcMat, dstMat, rotMat);
            cv::warpAffine(colorMat, dstMat, rotMat, cv::Size(std::max(srcMat.rows,srcMat.cols),std::max(srcMat.rows,srcMat.cols)), CV_INTER_NN);
            cv::warpAffine(wholeImage.clone(), wholeImageRotate, rotMat, cv::Size(std::max(srcMat.rows,srcMat.cols),std::max(srcMat.rows,srcMat.cols)), CV_INTER_LANCZOS4);
            //cv::imshow("RRRRRR", dstMat);
            
        }
        else
        {
            // cv::drawContours(showMat, contours, i, cv::Scalar(255,255,255), -1, 8);
            // imshow("Ellipses", showMat);
        }
    }
   
    cv::RNG rng; //随机数
    int rows = dstMat.rows;
    int cols = dstMat.cols;
   // printf(" b  cutImageByRect rows = %d \n",rows);
   // printf(" b  cutImageByRect cols = %d \n",cols);
    
    int lx = cols;
    int rx = 0;
    int ty = rows;
    int by = 0;
    
    cv::Mat grayDst;
    cv::cvtColor(dstMat, grayDst, CV_BGRA2GRAY);
    
    for(int y = 0; y<rows; y++ ){
        uchar *grayDstRowsData = grayDst.ptr<uchar>(y);
        for(int x = 0; x<cols; x++ ){
            if(grayDstRowsData[x] != 0 )
            {
                if(x<lx){
                    lx = x;
                }
                if(x>rx){
                    rx = x;
                }
                if(y<ty){
                    ty = y;
                }
                if(y>by){
                    by = y;
                }
            }
        }
    }
    //扩大一下截图范围
    if(lx - 10 >= 0)
        lx = lx - 10;
    if(rx + 10 <= cols - 1)
        rx = rx + 10;
    if(ty - 10 >= 0)
        ty = ty - 10;
    if(by + 10 <= rows - 1)
        by = by + 10;
    
    //cv::Point lt = cv::Point(lx,ty);
    //cv::Point rb = cv::Point(rx,by);
   
    cv::Rect cutRect = *new cv::Rect;
  
    cutRect.x = lx;
//.........这里部分代码省略.........
开发者ID:celesius,项目名称:cutImageIOSFramework,代码行数:101,代码来源:CutoutImage.cpp


示例9: filterImageEdgeAndBlurMerge

/*
 将输入的二值图边缘平滑,用锐利边缘抠取输入的彩色图,然后再将彩色图与平滑边缘的图进行融合
 */
void CutoutImage::filterImageEdgeAndBlurMerge( const cv::Mat colorMat, const cv::Mat bitMat, cv::Mat &dstMat )
{
    cv::Mat aBitMat = bitMat.clone();
    cv::Mat aColorMat = colorMat.clone();
    cv::Mat filterMat;
    //CutoutImage::filterImage(aBitMat, filterMat); //使预模糊区域大于正常区域
    filterMat = aBitMat;  //使预模糊区域与正常区域一样大
    
    std::cout<<"aColorMat channels =  " <<aColorMat.channels()<<std::endl;
    int blockSize = 5;
    int constValue = 10;
    //    cv::adaptiveThreshold( filterMat, filterMat, 255, CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY_INV, blockSize, constValue );
    cv::threshold(filterMat, filterMat, 1, 255, CV_THRESH_BINARY );
    //jiangbo test
    cv::Mat tmpMMat;
    //CutoutImage::smoothContours( filterMat, tmpMMat );
    
    int rows = aBitMat.rows;
    int cols = aBitMat.cols;
    //扣取范围较大的彩色图,并进行模糊,主要需要其边缘部分数据
    cv::Mat cutBigColorMat = cv::Mat( rows , cols, CV_8UC3, cv::Scalar(255,255,255) );
    for (int y = 0; y < rows; y++) {
        uchar *filterCutMatRowData = filterMat.ptr<uchar>(y);
        uchar *colorMatRowData = aColorMat.ptr<uchar>(y);
        uchar *cutBigColorMatRowData = cutBigColorMat.ptr<uchar>(y);
        for (int x = 0; x < cols; x++) {
            if(filterCutMatRowData[x] != 0){
                cutBigColorMatRowData[x*3]      = colorMatRowData[x*3];
                cutBigColorMatRowData[x*3 + 1]  = colorMatRowData[x*3 + 1];
                cutBigColorMatRowData[x*3 + 2]  = colorMatRowData[x*3 + 2];
            }
        }
    }
    cv::Mat cutBigColorMatFilter;
    //CutoutImage::filterImage(cutBigColorMat, cutBigColorMatFilter);
    CutoutImage::filterImageForEdgeBlur(cutBigColorMat, cutBigColorMatFilter);
    
    
    cv::Mat bgrFilterMat;
    cv::cvtColor(filterMat, bgrFilterMat, CV_GRAY2BGR);
    cv::Mat smoothMask;
    CutoutImage::smoothContours(colorMat, bgrFilterMat, 21 , tmpMMat, smoothMask);
    
    
    cv::Mat fooRusultMat = cv::Mat( rows , cols, CV_8UC3, cv::Scalar(0,0,0) );
    cv::Mat testEdgeData= cv::Mat( rows , cols, CV_8UC3, cv::Scalar(0,0,0) );
    //融合
    for(int y = 0; y < rows; y++){
        uchar *aBitMatRowData = aBitMat.ptr<uchar>(y);
        uchar *colorMatRowData = aColorMat.ptr<uchar>(y);
        uchar *cutBigColorMatRowData = cutBigColorMatFilter.ptr<uchar>(y);
        uchar *fooRusultMatRowData = fooRusultMat.ptr<uchar>(y);
        uchar *testEdgeDataRowData = testEdgeData.ptr<uchar>(y);
        for(int x = 0; x < cols; x++){
            if(aBitMatRowData[x] != 0){
                fooRusultMatRowData[x*3]     = colorMatRowData[x*3];
                fooRusultMatRowData[x*3 + 1] = colorMatRowData[x*3 + 1];
                fooRusultMatRowData[x*3 + 2] = colorMatRowData[x*3 + 2];
            }
            
            if(cutBigColorMatRowData[x*3] != 255 || cutBigColorMatRowData[x*3 + 1] != 255 || cutBigColorMatRowData[x*3 + 2] != 255){
                if(aBitMatRowData[x] == 0){
                    fooRusultMatRowData[x*3]     = cutBigColorMatRowData[x*3];
                    fooRusultMatRowData[x*3 + 1] = cutBigColorMatRowData[x*3 + 1];
                    fooRusultMatRowData[x*3 + 2] = cutBigColorMatRowData[x*3 + 2];
                    testEdgeDataRowData[x*3]     = cutBigColorMatRowData[x*3];
                    testEdgeDataRowData[x*3 + 1] = cutBigColorMatRowData[x*3 + 1];
                    testEdgeDataRowData[x*3 + 2] = cutBigColorMatRowData[x*3 + 2];
                }
            }
        }
    }
}
开发者ID:celesius,项目名称:cutImageIOSFramework,代码行数:76,代码来源:CutoutImage.cpp


示例10: setColorImg

void CutoutImage::setColorImg(cv::Mat colorImg)
{
    _cloverGrabCut->setImage(colorImg);
    inputColorImageSize = colorImg.size();
}
开发者ID:celesius,项目名称:cutImageIOSFramework,代码行数:5,代码来源:CutoutImage.cpp


示例11: processImageCreatMask

void CutoutImage::processImageCreatMask( std::vector<cv::Point> mouseSlideRegionDiscrete , const cv::Mat srcMat, cv::Mat &dstMat, int lineWidth, int expandWidth )
{
    cv::Mat showMat;// = srcMat.clone();
    cv::cvtColor(srcMat, showMat, CV_BGR2GRAY);
    cv::Mat showMergeColorImg = srcMat.clone();
    cv::Mat seedStoreMat = dstMat;   //seedStoreMat 在外部存储了本次操作所生成的全部种子点。
    mouseSlideRegion.clear();
    
    cv::Size matSize = *new cv::Size;
    matSize.width = showMat.cols;
    matSize.height = showMat.rows;
    CutoutImage::drawLineAndMakePointSet(mouseSlideRegionDiscrete,matSize,lineWidth,mouseSlideRegion);
    int lx = showMat.cols,rx = 0,ty = showMat.rows,by = 0;
    //求画线范围
    for(int i = 0;i<(int)mouseSlideRegion.size();i++)
    {
        //std::cout<<"point  = "<< mouseSlideRegion[i]<<std::endl;
        //cv::circle(showMatClone, mouseSlideRegion[i], 0.5, cv::Scalar(255)); //绘制现实点
        //最左面点x,最右面点x,最上面点y,最下面点y
        if(mouseSlideRegion[i].x < lx)
        {
            lx = mouseSlideRegion[i].x;
        }
        if(mouseSlideRegion[i].x > rx)
        {
            rx = mouseSlideRegion[i].x;
        }
        if(mouseSlideRegion[i].y <ty )
        {
            ty = mouseSlideRegion[i].y;
        }
        if(mouseSlideRegion[i].y > by){
            by = mouseSlideRegion[i].y;
        }
        //CvPoint forePtsCvPoint =
    }
    std::cout<<" lx " << lx << " rx " << rx << " ty " << ty << " by " << by <<std::endl;
    std::cout<<" orgMat cols " <<showMat.cols<< "orgMat rows " << showMat.rows <<std::endl;
    
    if( lx - expandWidth >= 0 )
        lx = lx - expandWidth;
  
    if( rx + expandWidth <= showMat.cols - 1 )
        rx = rx + expandWidth;
   
    if( ty - expandWidth >= 0)
        ty = ty - expandWidth;
    
    if( by + expandWidth <= showMat.rows - 1 )
        by = by + expandWidth;

    std::cout<<" lx " << lx << " rx " << rx << " ty " << ty << " by " << by <<std::endl;
    
    cv::Point ltP = cv::Point(lx,ty);
    cv::Point rtP = cv::Point(rx,ty);
    cv::Point lbP = cv::Point(lx,by);
    cv::Point rbP = cv::Point(rx,by);
    //要截取的图形
    int rectMatRow = by - ty + 1;
    int rectMatCol = rx - lx + 1;
    cv::Mat recMat = cv::Mat (rectMatRow,rectMatCol,CV_8UC1,cv::Scalar(0));
    //cv::rectangle(showMatClone, ltP, rbP, cv::Scalar(255),1); //画图形
    cv::Mat mouseSlideSeedStoreMat = cv::Mat(rectMatRow,rectMatCol,CV_8UC1,cv::Scalar(0));
    for(int y = 0;y<rectMatRow;y++){
        uchar *rectMatLineData = recMat.ptr<uchar>(y);
        uchar *orgMatLineData = showMat.ptr<uchar>(ty+y);
        uchar *msssMatLineData = mouseSlideSeedStoreMat.ptr<uchar>(y);
        uchar *ssMatLineData = seedStoreMat.ptr<uchar>(ty+y);
        for(int x = 0; x < rectMatCol; x++){
            rectMatLineData[x] = orgMatLineData[lx+x];
            msssMatLineData[x] = ssMatLineData[lx + x];
        }
    }
    //cutMat = recMat.clone();
    //cv::imshow("mouseSlideSeedStoreMat", mouseSlideSeedStoreMat);
    
    cv::Mat bitMat;
    int blockSize = 25;
    int constValue = 10;
    cv::adaptiveThreshold(recMat, bitMat, 255, CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY_INV, blockSize, constValue);
    
    cv::Mat filterImg;
    CutoutImage::filterImage(recMat,filterImg);
    cv::Mat nextImg = filterImg.clone();
    cv::Mat regionGrowMat;
    CutoutImage::rectRegionGrow( mouseSlideRegion, ltP, filterImg, mouseSlideSeedStoreMat ,regionGrowMat);
   // cv::imshow("regionGrowMat", regionGrowMat);
    cv::Mat mergeMat;
    CutoutImage::mergeProcess(regionGrowMat,mergeMat);
   // cv::imshow("mergeMat", mergeMat);
    CutoutImage::storeSeed(seedStoreMat,mergeMat,ltP); // seedStoreMat 需要扣取的mask
   // cv::imshow("seedStoreMat", seedStoreMat);
    //cv::imshow("showMat", showMatClone);
    cv::Mat colorMergeMat;
    CutoutImage::colorDispResultWithFullSeedMat(showMergeColorImg,seedStoreMat);
}
开发者ID:celesius,项目名称:cutImageIOSFramework,代码行数:96,代码来源:CutoutImage.cpp


示例12: rR

	/// <summary>
	/// Calculates for each image patch the focus measure value. Result is a vector of Patches (see class Patch).
	/// If the image is binary, the relative foreground (foreground pixel / patchSize) and the weight is stored for each Patch.
	/// </summary>
	/// <param name="fm">The specified focuse measure method fm (e.g. Brenner).</param>
	/// <param name="fmImg">The image fmImg to calculate the focus measure on. If empty, the src image is taken.</param>
	/// <param name="binary">if set to <c>true</c> [binary] the input image is binary, specifying the foreground image. The foreground area and the weight is saved to the image patch</param>
	/// <returns>True if the focus measure could be computed, false otherwise.</returns>
	bool FocusEstimation::compute(FocusMeasure fm, cv::Mat fmImg, bool binary)
	{

		cv::Mat fImg = fmImg;
		if (fImg.empty())
			fImg = mSrcImg;

		if (fImg.empty())
			return false;

		if (fmImg.channels() != 1 || fImg.depth() != CV_32F)
			return false;

		BasicFM fmClass;
		double f;
		mFmPatches.clear();

		for (int row = 0; row < fImg.rows; row += (mWindowSize+mSplitSize)) {
			for (int col = 0; col < fImg.cols; col += (mWindowSize+mSplitSize)) {

				cv::Range rR(row, cv::min(row + mWindowSize, fImg.rows));
				cv::Range cR(col, cv::min(col + mWindowSize, fImg.cols));

				cv::Mat tile = fImg(rR, cR);

				fmClass.setImg(tile);

				switch (fm)
				{
				case dsc::FocusEstimation::BREN:
					f = fmClass.computeBREN();
					break;
				case dsc::FocusEstimation::GLVA:
					f = fmClass.computeGLVA();
					break;
				case dsc::FocusEstimation::GLVN:
					f = fmClass.computeGLVN();
					break;
				case dsc::FocusEstimation::GLLV:
					f = fmClass.computeGLLV();
					break;
				case dsc::FocusEstimation::GRAT:
					f = fmClass.computeGRAT();
					break;
				case dsc::FocusEstimation::GRAS:
					f = fmClass.computeGRAS();
					break;
				case dsc::FocusEstimation::LAPE:
					f = fmClass.computeLAPE();
					break;
				case dsc::FocusEstimation::LAPV:
					f = fmClass.computeLAPV();
					break;
				case dsc::FocusEstimation::ROGR:
					f = fmClass.computeROGR();
					break;
				default:
					f = -1;
					break;
				}

				Patch r(cv::Point(col, row), mWindowSize, mWindowSize, f);

				if (binary) {
					cv::Scalar relArea = cv::sum(tile);
					r.setArea(relArea[0]);
					relArea[0] = relArea[0] / (double)(mWindowSize * mWindowSize);
					
					//area completely written with text ~ 0.1
					//normalize to 1
					relArea[0] *= 10.0;
					r.setWeight(relArea[0]);

					//weight with sigmoid function
					//-6: shift sigmoid to the right
					//*10: scale normalized Area
					//double a = 10.0;
					//double b = -6.0;
					//double weight = 1.0 / (1 + std::exp(-(relArea[0] * a + b)));
					//r.setWeight(weight);
				}


				mFmPatches.push_back(r);
			}
		}

		return true;
	}
开发者ID:TUWien,项目名称:DocScan,代码行数:97,代码来源:FocusMeasure.cpp


示例13: computeMaxGradient

cv::Point EyeTracker::computePupilLocation(cv::Mat eye) {
    cv::Mat x_gradient = computeMaxGradient(eye);
    cv::Mat y_gradient = computeMaxGradient(eye.t()).t();
    cv::Mat magnitude = computeMagnitudes(x_gradient, y_gradient);
    double gradient_threshold =
        computeDynamicThreshold(magnitude, 50.0);
    resizeAndRender(magnitude, "sample_eye_gradient_mag");
    DEBUG("Gradient threshold: " << gradient_threshold);
    
    for (int y = 0; y < eye.rows; ++y) {
        double* x_row = x_gradient.ptr<double>(y);
        double* y_row = y_gradient.ptr<double>(y);
        const double* mag_row = magnitude.ptr<double>(y);
        for (int x = 0; x < eye.cols; ++x) {
            double gX = x_row[x];
            double gY = y_row[x];
            double m = mag_row[x];
            if (m > gradient_threshold) {
                x_row[x] = gX / m;
                y_row[x] = gY / m;
            } else {
                x_row[x] = 0;
                y_row[x] = 0;
            }
        }
    }
    
    resizeAndRender(x_gradient, "sample_eye_gradient_x");
    resizeAndRender(y_gradient, "sample_eye_gradient_y");
    
    cv::Mat weight;
    cv::GaussianBlur(eye, weight,
                     cv::Size(5, 5), 0, 0);
    for (int y = 0; y < weight.rows; ++y) {
        unsigned char* row = weight.ptr<unsigned char>(y);
        for (int x = 0; x < weight.cols; ++x) {
            row[x] = (255 - row[x]);
        }
    }
    
    resizeAndRender(weight, "sample_eye_weight");
    
    cv::Mat out_sum = cv::Mat::zeros(eye.rows, eye.cols, CV_64F);
    for (int y = 0; y < weight.rows; ++y) {
        const double* Xr = x_gradient.ptr<double>(y);
        const double* Yr = y_gradient.ptr<double>(y);
        for (int x = 0; x < weight.cols; ++x) {
            double gX = Xr[x];
            double gY = Yr[x];
            if (gX == 0.0 && gY == 0.0) {
                continue;
            }
            test_center(x, y, weight, gX, gY, out_sum);
        }
    }
    
    double gradients_num = weight.rows * weight.cols;
    cv::Mat out;
    out_sum.convertTo(out, CV_32F, 1.0 / gradients_num);
    
    cv::Point max_point;
    double max_value;
    cv::minMaxLoc(out, NULL, &max_value, NULL, &max_point);
    
    cv::Mat flood_clone;
    double flood_thresh = max_value * 0.97;
    cv::threshold(out, flood_clone, flood_thresh, 0.0f, cv::THRESH_TOZERO);
    cv::Mat mask = floodKillEdges(flood_clone);
    
    cv::minMaxLoc(out, NULL, &max_value, NULL, &max_point, mask);
    
    resizeAndRender(mask, "sample_eye_mask");
    resizeAndRender(out, "sample_eye_possible_centers");
    return max_point;
}
开发者ID:AnimatedRNG,项目名称:node-ui,代码行数:75,代码来源:eye_input.cpp


示例14: ROS_ERROR

void Depth::calcPointCloud(
    const cv::Mat& input_disparity, const cv::Mat& left_image,
    const double baseline, const double focal_length, const int cx,
    const int cy, pcl::PointCloud<pcl::PointXYZRGB>* pointcloud,
    pcl::PointCloud<pcl::PointXYZRGB>* freespace_pointcloud) {
  pointcloud->clear();
  freespace_pointcloud->clear();

  if (left_image.depth() != CV_8U) {
    ROS_ERROR(
        "Pointcloud generation is currently only supported on 8 bit images");
    return;
  }

  cv::Mat disparity_filled, input_valid;
  bulidFilledDisparityImage(input_disparity, &disparity_filled, &input_valid);

  int side_bound = sad_window_size_ / 2;

  // build pointcloud
  for (int y_pixels = side_bound; y_pixels < input_disparity.rows - side_bound;
       ++y_pixels) {
    for (int x_pixels = side_bound + min_disparity_ + num_disparities_;
         x_pixels < input_disparity.cols - side_bound; ++x_pixels) {
      const uint8_t& is_valid = input_valid.at<uint8_t>(y_pixels, x_pixels);
      const int16_t& input_value =
          input_disparity.at<int16_t>(y_pixels, x_pixels);
      const int16_t& filled_value =
          disparity_filled.at<int16_t>(y_pixels, x_pixels);

      bool freespace;
      double disparity_value;

      // if the filled disparity is valid it must be a freespace ray
      if (filled_value < std::numeric_limits<int16_t>::max()) {
        disparity_value = static_cast<double>(filled_value);
        freespace = true;
      }
      // else it is a normal ray
      else if (is_valid) {
        disparity_value = static_cast<double>(input_value);
        freespace = false;
      } else {
        continue;
      }

      pcl::PointXYZRGB point;

      // the 16* is needed as opencv stores disparity maps as 16 * the true
      // values
      point.z = (16 * focal_length * baseline) / disparity_value;
      point.x = point.z * (x_pixels - cx) / focal_length;
      point.y = point.z * (y_pixels - cy) / focal_length;

      if (left_image.channels() == 3) {
        const cv::Vec3b& color = left_image.at<cv::Vec3b>(y_pixels, x_pixels);
        point.b = color[0];
        point.g = color[1];
        point.r = color[2];
      } else if (left_image.channels() == 4) {
        const cv::Vec4b& color = left_image.at<cv::Vec4b>(y_pixels, x_pixels);
        point.b = color[0];
        point.g = color[1];
        point.r = color[2];
      } else {
        point.b = left_image.at<uint8_t>(y_pixels, x_pixels);
        point.g = point.b;
        point.r = point.b;
      }

      if (freespace) {
        freespace_pointcloud->push_back(point);
      } else {
        pointcloud->push_back(point);
      }
    }
  }
}
开发者ID:ethz-asl,项目名称:image_undistort,代码行数:78,代码来源:depth.cpp


示例15: extract

bool QrExtractor::extract( const cv::Mat & img )
{
    if ( pd->debug )
        pd->orig = img.clone();

    cv::cvtColor( img, pd->gray, CV_RGB2GRAY );

    if ( pd->smoothSz > 0 )
    {
        // Med 

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C++ cv::Mat_类代码示例发布时间:2022-05-31
下一篇:
C++ cv::InputArray类代码示例发布时间:2022-05-31
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap