• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

C++ cv::Ptr类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C++中cv::Ptr的典型用法代码示例。如果您正苦于以下问题:C++ Ptr类的具体用法?C++ Ptr怎么用?C++ Ptr使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Ptr类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。

示例1: callback

    void callback(const sensor_msgs::ImageConstPtr& msg)
    {
        if (image_0_ == NULL)
        {
            // Take first image:
            try
            {
                image_0_ = cv_bridge::toCvCopy(msg,
                        sensor_msgs::image_encodings::isColor(msg->encoding) ?
                        sensor_msgs::image_encodings::BGR8 :
                        sensor_msgs::image_encodings::MONO8);
            }
            catch (cv_bridge::Exception& e)
            {
                ROS_ERROR_STREAM("Failed to take first image: " << e.what());
                return;
            }

            ROS_INFO("First image taken");

            // Detect keypoints:
            detector_->detect(image_0_->image, keypoints_0_);
            ROS_INFO_STREAM(keypoints_0_.size() << " points found.");

            // Extract keypoints' descriptors:
            extractor_->compute(image_0_->image, keypoints_0_, descriptors_0_);
        }
        else
        {
            // Take second image:
            try
            {
                image_1_ = cv_bridge::toCvShare(msg,
                        sensor_msgs::image_encodings::isColor(msg->encoding) ?
                        sensor_msgs::image_encodings::BGR8 :
                        sensor_msgs::image_encodings::MONO8);
            }
            catch (cv_bridge::Exception& e)
            {
                ROS_ERROR_STREAM("Failed to take image: " << e.what());
                return;
            }

            // Detect keypoints:
            std::vector<cv::KeyPoint> keypoints_1;
            detector_->detect(image_1_->image, keypoints_1);
            ROS_INFO_STREAM(keypoints_1.size() << " points found on the new image.");

            // Extract keypoints' descriptors:
            cv::Mat descriptors_1;
            extractor_->compute(image_1_->image, keypoints_1, descriptors_1);

            // Compute matches:
            std::vector<cv::DMatch> matches;
            match(descriptors_0_, descriptors_1, matches);

            // Compute homography:
            cv::Mat H;
            homography(keypoints_0_, keypoints_1, matches, H);

            // Draw matches:
            const int s = std::max(image_0_->image.rows, image_0_->image.cols);
            cv::Size size(s, s);
            cv::Mat draw_image;
            warped_image_ = boost::make_shared<cv_bridge::CvImage>(
                    image_0_->header, image_0_->encoding,
                    cv::Mat(size, image_0_->image.type()));
            if (!H.empty()) // filter outliers
            {
                std::vector<char> matchesMask(matches.size(), 0);

                const size_t N = matches.size();
                std::vector<int> queryIdxs(N), trainIdxs(N);
                for (size_t i = 0; i < N; ++i)
                {
                    queryIdxs[i] = matches[i].queryIdx;
                    trainIdxs[i] = matches[i].trainIdx;
                }

                std::vector<cv::Point2f> points1, points2;
                cv::KeyPoint::convert(keypoints_0_, points1, queryIdxs);
                cv::KeyPoint::convert(keypoints_1, points2, trainIdxs);

                cv::Mat points1t;
                cv::perspectiveTransform(cv::Mat(points1), points1t, H);

                double maxInlierDist = threshold_ < 0 ? 3 : threshold_;
                for (size_t i1 = 0; i1 < points1.size(); ++i1)
                {
                    if (cv::norm(points2[i1] - points1t.at<cv::Point2f>((int)i1,0)) <= maxInlierDist ) // inlier
                        matchesMask[i1] = 1;
                }
                // draw inliers
                cv::drawMatches(
                        image_0_->image, keypoints_0_,
                        image_1_->image, keypoints_1, matches,
                        draw_image, cv::Scalar(0, 255, 0), cv::Scalar(0, 0, 255),
                        matchesMask,
                        cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);

//.........这里部分代码省略.........
开发者ID:PETGreen,项目名称:effective_robotics_programming_with_ros,代码行数:101,代码来源:homography.cpp


示例2: CascadeDetectorAdapter

 CascadeDetectorAdapter(cv::Ptr<cv::CascadeClassifier> detector):
     Detector(detector)
 {
     CV_Assert(!detector.empty());
 }
开发者ID:Linyes,项目名称:opencv,代码行数:5,代码来源:detection_based_tracker_sample.cpp


示例3: calculate

void MapperGradEuclid::calculate(
    const cv::Mat& img1, const cv::Mat& image2, cv::Ptr<Map>& res) const
{
    Mat gradx, grady, imgDiff;
    Mat img2;

    CV_DbgAssert(img1.size() == image2.size());
    CV_DbgAssert(img1.channels() == image2.channels());
    CV_DbgAssert(img1.channels() == 1 || img1.channels() == 3);

    if(!res.empty()) {
        // We have initial values for the registration: we move img2 to that initial reference
        res->inverseWarp(image2, img2);
    } else {
        img2 = image2;
    }

    // Matrices with reference frame coordinates
    Mat grid_r, grid_c;
    grid(img1, grid_r, grid_c);

    // Get gradient in all channels
    gradient(img1, img2, gradx, grady, imgDiff);

    // Calculate parameters using least squares
    Matx<double, 3, 3> A;
    Vec<double, 3> b;
    // For each value in A, all the matrix elements are added and then the channels are also added,
    // so we have two calls to "sum". The result can be found in the first element of the final
    // Scalar object.
    Mat xIy_yIx = grid_c.mul(grady);
    xIy_yIx -= grid_r.mul(gradx);

    A(0, 0) = sum(sum(gradx.mul(gradx)))[0];
    A(0, 1) = sum(sum(gradx.mul(grady)))[0];
    A(0, 2) = sum(sum(gradx.mul(xIy_yIx)))[0];
    A(1, 1) = sum(sum(grady.mul(grady)))[0];
    A(1, 2) = sum(sum(grady.mul(xIy_yIx)))[0];
    A(2, 2) = sum(sum(xIy_yIx.mul(xIy_yIx)))[0];
    A(1, 0) = A(0, 1);
    A(2, 0) = A(0, 2);
    A(2, 1) = A(1, 2);

    b(0) = -sum(sum(imgDiff.mul(gradx)))[0];
    b(1) = -sum(sum(imgDiff.mul(grady)))[0];
    b(2) = -sum(sum(imgDiff.mul(xIy_yIx)))[0];

    // Calculate parameters. We use Cholesky decomposition, as A is symmetric.
    Vec<double, 3> k = A.inv(DECOMP_CHOLESKY)*b;

    double cosT = cos(k(2));
    double sinT = sin(k(2));
    Matx<double, 2, 2> linTr(cosT, -sinT, sinT, cosT);
    Vec<double, 2> shift(k(0), k(1));

    if(res.empty()) {
        res = Ptr<Map>(new MapAffine(linTr, shift));
    } else {
        MapAffine newTr(linTr, shift);
        res->compose(newTr);
   }
}
开发者ID:23pointsNorth,项目名称:opencv_contrib,代码行数:62,代码来源:mappergradeuclid.cpp


示例4: main

 int main(int argc, char* argv[]) {
     // welcome message
     std::cout<<"*********************************************************************************"<<std::endl;
     std::cout<<"* Retina demonstration for High Dynamic Range compression (tone-mapping) : demonstrates the use of a wrapper class of the Gipsa/Listic Labs retina model."<<std::endl;
     std::cout<<"* This retina model allows spatio-temporal image processing (applied on still images, video sequences)."<<std::endl;
     std::cout<<"* This demo focuses demonstration of the dynamic compression capabilities of the model"<<std::endl;
     std::cout<<"* => the main application is tone mapping of HDR images (i.e. see on a 8bit display a more than 8bits coded (up to 16bits) image with details in high and low luminance ranges"<<std::endl;
     std::cout<<"* The retina model still have the following properties:"<<std::endl;
     std::cout<<"* => It applies a spectral whithening (mid-frequency details enhancement)"<<std::endl;
     std::cout<<"* => high frequency spatio-temporal noise reduction"<<std::endl;
     std::cout<<"* => low frequency luminance to be reduced (luminance range compression)"<<std::endl;
     std::cout<<"* => local logarithmic luminance compression allows details to be enhanced in low light conditions\n"<<std::endl;
     std::cout<<"* for more information, reer to the following papers :"<<std::endl;
     std::cout<<"* Benoit A., Caplier A., Durette B., Herault, J., \"USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING\", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011"<<std::endl;
     std::cout<<"* Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891."<<std::endl;
     std::cout<<"* => reports comments/remarks at [email protected]"<<std::endl;
     std::cout<<"* => more informations and papers at : http://sites.google.com/site/benoitalexandrevision/"<<std::endl;
     std::cout<<"*********************************************************************************"<<std::endl;
     std::cout<<"** WARNING : this sample requires OpenCV to be configured with OpenEXR support **"<<std::endl;
     std::cout<<"*********************************************************************************"<<std::endl;
     std::cout<<"*** You can use free tools to generate OpenEXR images from images sets   :    ***"<<std::endl;
     std::cout<<"*** =>  1. take a set of photos from the same viewpoint using bracketing      ***"<<std::endl;
     std::cout<<"*** =>  2. generate an OpenEXR image with tools like qtpfsgui.sourceforge.net ***"<<std::endl;
     std::cout<<"*** =>  3. apply tone mapping with this program                               ***"<<std::endl;
     std::cout<<"*********************************************************************************"<<std::endl;

     // basic input arguments checking
     if (argc<2)
     {
         help("bad number of parameter");
         return -1;
     }

     bool useLogSampling = !strcmp(argv[argc-1], "log"); // check if user wants retina log sampling processing
     int chosenMethod=0;
     if (!strcmp(argv[argc-1], "fast"))
     {
         chosenMethod=1;
         std::cout<<"Using fast method (no spectral whithning), adaptation of Meylan&al 2008 method"<<std::endl;
     }

     std::string inputImageName=argv[1];

     //////////////////////////////////////////////////////////////////////////////
     // checking input media type (still image, video file, live video acquisition)
     std::cout<<"RetinaDemo: processing image "<<inputImageName<<std::endl;
     // image processing case
     // declare the retina input buffer... that will be fed differently in regard of the input media
     inputImage = cv::imread(inputImageName, -1); // load image in RGB mode
     std::cout<<"=> image size (h,w) = "<<inputImage.size().height<<", "<<inputImage.size().width<<std::endl;
     if (!inputImage.total())
     {
        help("could not load image, program end");
            return -1;
         }
     // rescale between 0 and 1
     normalize(inputImage, inputImage, 0.0, 1.0, cv::NORM_MINMAX);
     cv::Mat gammaTransformedImage;
     cv::pow(inputImage, 1./5, gammaTransformedImage); // apply gamma curve: img = img ** (1./5)
     imshow("EXR image original image, 16bits=>8bits linear rescaling ", inputImage);
     imshow("EXR image with basic processing : 16bits=>8bits with gamma correction", gammaTransformedImage);
     if (inputImage.empty())
     {
         help("Input image could not be loaded, aborting");
         return -1;
     }

     //////////////////////////////////////////////////////////////////////////////
     // Program start in a try/catch safety context (Retina may throw errors)
     try
     {
         /* create a retina instance with default parameters setup, uncomment the initialisation you wanna test
          * -> if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision)
          */
         if (useLogSampling)
         {
             retina = cv::bioinspired::createRetina(inputImage.size(),true, cv::bioinspired::RETINA_COLOR_BAYER, true, 2.0, 10.0);
                 }
         else// -> else allocate "classical" retina :
             retina = cv::bioinspired::createRetina(inputImage.size());

         // create a fast retina tone mapper (Meyla&al algorithm)
         std::cout<<"Allocating fast tone mapper..."<<std::endl;
         //cv::Ptr<cv::RetinaFastToneMapping> fastToneMapper=createRetinaFastToneMapping(inputImage.size());
         std::cout<<"Fast tone mapper allocated"<<std::endl;

         // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup"
         retina->write("RetinaDefaultParameters.xml");

         // desactivate Magnocellular pathway processing (motion information extraction) since it is not usefull here
         retina->activateMovingContoursProcessing(false);

         // declare retina output buffers
         cv::Mat retinaOutput_parvo;

         /////////////////////////////////////////////
         // prepare displays and interactions
         histogramClippingValue=0; // default value... updated with interface slider
         //inputRescaleMat = inputImage;
         //outputRescaleMat = imageInputRescaled;
//.........这里部分代码省略.........
开发者ID:AnnaMariaM,项目名称:opencv,代码行数:101,代码来源:OpenEXRimages_HDR_Retina_toneMapping.cpp


示例5: findCirclesGridAB

bool findCirclesGridAB( cv::InputArray _image, cv::Size patternSize,
		cv::OutputArray _centers, int flags, const cv::Ptr<cv::FeatureDetector> &blobDetector )
{
    bool isAsymmetricGrid = (flags & cv::CALIB_CB_ASYMMETRIC_GRID) ? true : false;
    bool isSymmetricGrid  = (flags & cv::CALIB_CB_SYMMETRIC_GRID ) ? true : false;
    CV_Assert(isAsymmetricGrid ^ isSymmetricGrid);

    cv::Mat image = _image.getMat();
    std::vector<cv::Point2f> centers;

    std::vector<cv::KeyPoint> keypoints;
    blobDetector->detect(image, keypoints);
    std::vector<cv::Point2f> points;
    for (size_t i = 0; i < keypoints.size(); i++)
    {
      points.push_back (keypoints[i].pt);
    }

    if(flags & cv::CALIB_CB_CLUSTERING)
    {
      CirclesGridClusterFinder circlesGridClusterFinder(isAsymmetricGrid);
      circlesGridClusterFinder.findGrid(points, patternSize, centers);
      cv::Mat(centers).copyTo(_centers);
      return !centers.empty();
    }

    CirclesGridFinderParameters parameters;
    parameters.vertexPenalty = -0.6f;
    parameters.vertexGain = 1;
    parameters.existingVertexGain = 10000;
    parameters.edgeGain = 1;
    parameters.edgePenalty = -0.6f;

    if(flags & cv::CALIB_CB_ASYMMETRIC_GRID)
      parameters.gridType = CirclesGridFinderParameters::ASYMMETRIC_GRID;
    if(flags & cv::CALIB_CB_SYMMETRIC_GRID)
      parameters.gridType = CirclesGridFinderParameters::SYMMETRIC_GRID;

    const int attempts = 2;
    const size_t minHomographyPoints = 4;
    cv::Mat H;
    for (int i = 0; i < attempts; i++)
    {
      centers.clear();
      CirclesGridFinder boxFinder(patternSize, points, parameters);
      bool isFound = false;
//#define BE_QUIET 1
#if BE_QUIET
      void* oldCbkData;
      //cv::ErrorCallback oldCbk = redirectError(quiet_error, 0, &oldCbkData);
#endif
      try
      {
        isFound = boxFinder.findHoles();
      }
      catch (cv::Exception)
      {

      }
#if BE_QUIET
      redirectError(oldCbk, oldCbkData);
#endif
      if (isFound)
      {
      	switch(parameters.gridType)
      	{
          case CirclesGridFinderParameters::SYMMETRIC_GRID:
            boxFinder.getHoles(centers);
            break;
          case CirclesGridFinderParameters::ASYMMETRIC_GRID:
	    boxFinder.getAsymmetricHoles(centers);
	    break;
          default:
            CV_Error(CV_StsBadArg, "Unkown pattern type");
      	}

        if (i != 0)
        {
        	cv::Mat orgPointsMat;
        	cv::transform(centers, orgPointsMat, H.inv());
        	cv::convertPointsFromHomogeneous(orgPointsMat, centers);
        }
        cv::Mat(centers).copyTo(_centers);
        return true;
      }

      boxFinder.getHoles(centers);
      if (i != attempts - 1)
      {
        if (centers.size() < minHomographyPoints)
          break;
        H = CirclesGridFinder::rectifyGrid(boxFinder.getDetectedGridSize(), centers, points, points);
      }
    }
    cv::Mat(centers).copyTo(_centers);
    return false;
}
开发者ID:abroun,项目名称:text_mapping,代码行数:97,代码来源:camera_calibration.cpp


示例6: calculate

void MapperGradProj::calculate(
    const cv::Mat& img1, const cv::Mat& image2, cv::Ptr<Map>& res) const
{
    Mat gradx, grady, imgDiff;
    Mat img2;

    CV_DbgAssert(img1.size() == image2.size());
    CV_DbgAssert(img1.channels() == image2.channels());
    CV_DbgAssert(img1.channels() == 1 || img1.channels() == 3);

    if(!res.empty()) {
        // We have initial values for the registration: we move img2 to that initial reference
        res->inverseWarp(image2, img2);
    } else {
        img2 = image2;
    }

    // Get gradient in all channels
    gradient(img1, img2, gradx, grady, imgDiff);

    // Matrices with reference frame coordinates
    Mat grid_r, grid_c;
    grid(img1, grid_r, grid_c);

    // Calculate parameters using least squares
    Matx<double, 8, 8> A;
    Vec<double, 8> b;
    // For each value in A, all the matrix elements are added and then the channels are also added,
    // so we have two calls to "sum". The result can be found in the first element of the final
    // Scalar object.
    Mat xIx = grid_c.mul(gradx);
    Mat xIy = grid_c.mul(grady);
    Mat yIx = grid_r.mul(gradx);
    Mat yIy = grid_r.mul(grady);
    Mat Ix2 = gradx.mul(gradx);
    Mat Iy2 = grady.mul(grady);
    Mat xy = grid_c.mul(grid_r);
    Mat IxIy = gradx.mul(grady);
    Mat x2 = grid_c.mul(grid_c);
    Mat y2 = grid_r.mul(grid_r);
    Mat G = xIx + yIy;
    Mat G2 = sqr(G);
    Mat IxG = gradx.mul(G);
    Mat IyG = grady.mul(G);

    A(0, 0) = sum(sum(x2.mul(Ix2)))[0];
    A(1, 0) = sum(sum(xy.mul(Ix2)))[0];
    A(2, 0) = sum(sum(grid_c.mul(Ix2)))[0];
    A(3, 0) = sum(sum(x2.mul(IxIy)))[0];
    A(4, 0) = sum(sum(xy.mul(IxIy)))[0];
    A(5, 0) = sum(sum(grid_c.mul(IxIy)))[0];
    A(6, 0) = -sum(sum(x2.mul(IxG)))[0];
    A(7, 0) = -sum(sum(xy.mul(IxG)))[0];

    A(1, 1) = sum(sum(y2.mul(Ix2)))[0];
    A(2, 1) = sum(sum(grid_r.mul(Ix2)))[0];
    A(3, 1) = A(4, 0);
    A(4, 1) = sum(sum(y2.mul(IxIy)))[0];
    A(5, 1) = sum(sum(grid_r.mul(IxIy)))[0];
    A(6, 1) = A(7, 0);
    A(7, 1) = -sum(sum(y2.mul(IxG)))[0];

    A(2, 2) = sum(sum(Ix2))[0];
    A(3, 2) = A(5, 0);
    A(4, 2) = A(5, 1);
    A(5, 2) = sum(sum(IxIy))[0];
    A(6, 2) = -sum(sum(grid_c.mul(IxG)))[0];
    A(7, 2) = -sum(sum(grid_r.mul(IxG)))[0];

    A(3, 3) = sum(sum(x2.mul(Iy2)))[0];
    A(4, 3) = sum(sum(xy.mul(Iy2)))[0];
    A(5, 3) = sum(sum(grid_c.mul(Iy2)))[0];
    A(6, 3) = -sum(sum(x2.mul(IyG)))[0];
    A(7, 3) = -sum(sum(xy.mul(IyG)))[0];

    A(4, 4) = sum(sum(y2.mul(Iy2)))[0];
    A(5, 4) = sum(sum(grid_r.mul(Iy2)))[0];
    A(6, 4) = A(7, 3);
    A(7, 4) = -sum(sum(y2.mul(IyG)))[0];

    A(5, 5) = sum(sum(Iy2))[0];
    A(6, 5) = -sum(sum(grid_c.mul(IyG)))[0];
    A(7, 5) = -sum(sum(grid_r.mul(IyG)))[0];

    A(6, 6) = sum(sum(x2.mul(G2)))[0];
    A(7, 6) = sum(sum(xy.mul(G2)))[0];

    A(7, 7) = sum(sum(y2.mul(G2)))[0];

    // Upper half values (A is symmetric)
    A(0, 1) = A(1, 0);
    A(0, 2) = A(2, 0);
    A(0, 3) = A(3, 0);
    A(0, 4) = A(4, 0);
    A(0, 5) = A(5, 0);
    A(0, 6) = A(6, 0);
    A(0, 7) = A(7, 0);
    
    A(1, 2) = A(2, 1);
    A(1, 3) = A(3, 1);
//.........这里部分代码省略.........
开发者ID:alfonsosanchezbeato,项目名称:OpenCV_reg,代码行数:101,代码来源:mappergradproj.cpp


示例7: stereoSelectorCallback

void stereoSelectorCallback(const sensor_msgs::Image::ConstPtr& image_ptr)
{
    if(!capture_image)
    	return;

	

    cv_bridge::CvImagePtr cv_ptr;

    try
    {
      cv_ptr = cv_bridge::toCvCopy(image_ptr, sensor_msgs::image_encodings::RGB8);
    }
    catch (cv_bridge::Exception& e)
    {
		ROS_ERROR("cv_bridge exception: %s", e.what());
		return;
    }

    cv::cvtColor(cv_ptr->image, input_image, CV_BGR2RGB);

    string object_name;

    //input_image = crop_hand(input_image);

    float certainty = orbit->recognizeObject(input_image, object_name, Orbit::BAG_OF_WORDS_SVM);


	/*
	*	Clean stabilizer if gesture has not been seen in a while
	*/

	ros::Time now = ros::Time::now();
	ros::Duration diff_last_hand_received = now - last_hand_received;
	
	last_hand_received = now;

	if(diff_last_hand_received.toSec()>1)
	{
		for(unsigned int i = 0; i<stabilizer.size(); i++)
		{
			stabilizer[i] = 0;
		}
	}

    /*
     * Update stabilizer when the gesture is not recognized
     */
	if(certainty<(float)certainty_threshold)
	{
		for(unsigned int i = 0; i<stabilizer.size()-1; i++)
		{

			if(stabilizer[i]>0)
				stabilizer[i]--;
		}

		if(stabilizer[stabilizer.size()-1] < max_stabilizer)
			stabilizer[stabilizer.size()-1]++;

		return;
	}
	else
	{
		if(stabilizer[stabilizer.size()-1] >= 2)
			stabilizer[stabilizer.size()-1]-=2;
		else if(stabilizer[stabilizer.size()-1] == 1)
			stabilizer[stabilizer.size()-1]--;
	}






	/*
	 * Update stabilizer when gesture is known
	 */
	for(unsigned int i = 0; i<stabilizer.size()-1; i++)
	{
		if(object_name == hands[i])
		{
			if(stabilizer[i] < max_stabilizer)
				stabilizer[i]++;
		}
		else
		{	if(stabilizer[i]>0)
				stabilizer[i]--;
		}
	}


	/*
	 * Print Stabilizer values
	 */
	for(unsigned int i = 0; i<stabilizer.size(); i++)
	{
		if(i<stabilizer.size()-1)
			printf("%s: %d, ",hands[i].c_str(), stabilizer[i]);
		else
//.........这里部分代码省略.........
开发者ID:Atom-machinerule,项目名称:OpenQbo,代码行数:101,代码来源:hand_gesture_node.cpp


示例8: backgroundSubstractionDetection

void backgroundSubstractionDetection(cv::Mat sequence, std::vector<cv::Rect> &detectedPedestrianFiltered, cv::Ptr<cv::BackgroundSubtractor> &pMOG2, trackingOption &tracking)
{
    int threshold = 150;
    cv::Mat mask;
    cv::Mat sequenceGrayDiff;
    std::vector<std::vector<cv::Point> > contours;
    std::vector<cv::Vec4i> hierarchy;
    std::vector<std::vector<cv::Point> > contours_poly;
    std::vector<cv::Rect> detectedPedestrian;

    pMOG2->apply(sequence,sequenceGrayDiff);


    cv::threshold(sequenceGrayDiff, mask, threshold, 255, cv::THRESH_BINARY);

    cv::erode(mask, mask, cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(6,6)));
    cv::dilate(mask, mask, cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(25,55)));
    cv::erode(mask, mask, cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(3,6)));


    /*
    cv::Mat dist;
    cv::distanceTransform(mask, dist, CV_DIST_L2, 3);
    cv::normalize(dist, dist, 0, 1., cv::NORM_MINMAX);
    cv::threshold(dist, dist, .4, 1., CV_THRESH_BINARY);
    cv::imshow("temp", dist);
    */

    cv::findContours(mask, contours, hierarchy, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE, cv::Point(0,0));

    contours_poly.resize(contours.size());
    detectedPedestrian.resize(contours.size());

    for(size_t j=0;j<contours.size();j++)
    {
        cv::approxPolyDP(cv::Mat(contours[j]), contours_poly[j], 3, true);
        detectedPedestrian[j] = cv::boundingRect(cv::Mat(contours_poly[j]));


        //test
        /*
        double pix = 30;
        if(detectedPedestrian[j].x >= pix)
            detectedPedestrian[j].x -= pix;
        else
            detectedPedestrian[j].x = 0;
        if((detectedPedestrian[j].x+detectedPedestrian[j].width) <= (sequence.cols-pix))
            detectedPedestrian[j].width += pix;
        else
            detectedPedestrian[j].width = sequence.cols - detectedPedestrian[j].x;
        if(detectedPedestrian[j].y >= pix)
            detectedPedestrian[j].y -= pix;
        else
            detectedPedestrian[j].y = 0;
        if((detectedPedestrian[j].y+detectedPedestrian[j].height) <= (sequence.rows-pix))
            detectedPedestrian[j].height += pix;
        else
            detectedPedestrian[j].height = sequence.rows - detectedPedestrian[j].y;
        */
    }

    if(detectedPedestrian.size() != 0)
    {
        tracking = GOOD_FEATURES_TO_TRACK;
        detectedPedestrianFiltered.clear();
        detectedPedestrianFiltered.resize(detectedPedestrian.size());
        detectedPedestrianFiltered = detectedPedestrian;
    }
    else
        tracking = NOTHING_TO_TRACK;

}
开发者ID:Pandhariix,项目名称:Tracking,代码行数:72,代码来源:main.cpp


示例9: createGICPStructures

Node::Node(ros::NodeHandle& nh, const cv::Mat& visual,
    cv::Ptr<cv::FeatureDetector> detector,
    cv::Ptr<cv::DescriptorExtractor> extractor,
    cv::Ptr<cv::DescriptorMatcher> matcher,
    const sensor_msgs::PointCloud2ConstPtr point_cloud,
    const cv::Mat& detection_mask)
: id_(0), 
flannIndex(NULL),
matcher_(matcher)
{
#ifdef USE_ICP_CODE
  gicp_initialized = false;
#endif
  std::clock_t starttime=std::clock();

#ifdef USE_SIFT_GPU
  SiftGPUFeatureDetector* siftgpu = SiftGPUFeatureDetector::GetInstance();
  float* descriptors = siftgpu->detect(visual, feature_locations_2d_);
  if (descriptors == NULL) {
    ROS_FATAL("Can't run SiftGPU");
  }
#else
  ROS_FATAL_COND(detector.empty(), "No valid detector!");
  detector->detect( visual, feature_locations_2d_, detection_mask);// fill 2d locations
#endif

  ROS_INFO("Feature detection and descriptor extraction runtime: %f", ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC);
  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", "Feature detection runtime: " << ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC );

  /*
    if (id_  == 0)
        cloud_pub_ = nh_->advertise<sensor_msgs::PointCloud2>("clouds_from_node_base",10);
    else{
   */
  cloud_pub_ = nh.advertise<sensor_msgs::PointCloud2>("/rgbdslam/batch_clouds",20);
  //   cloud_pub_ransac = nh_->advertise<sensor_msgs::PointCloud2>("clouds_from_node_current_ransac",10);
  //} */

  // get pcl::Pointcloud to extract depthValues a pixel positions
  std::clock_t starttime5=std::clock();
  // TODO: If batch sending/saving of clouds would be removed, the pointcloud wouldn't have to be saved
  // which would slim down the Memory requirements
  pcl::fromROSMsg(*point_cloud,pc_col);
  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime5) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", "pc2->pcl conversion runtime: " << ( std::clock() - starttime5 ) / (double)CLOCKS_PER_SEC );

  // project pixels to 3dPositions and create search structures for the gicp
#ifdef USE_SIFT_GPU
  // removes also unused descriptors from the descriptors matrix
  // build descriptor matrix
  projectTo3DSiftGPU(feature_locations_2d_, feature_locations_3d_, pc_col, descriptors, feature_descriptors_); //takes less than 0.01 sec

  if (descriptors != NULL) delete descriptors;

#else
  projectTo3D(feature_locations_2d_, feature_locations_3d_, pc_col); //takes less than 0.01 sec
#endif

  // projectTo3d need a dense cloud to use the points.at(px.x,px.y)-Call
#ifdef USE_ICP_CODE
  std::clock_t starttime4=std::clock();
  createGICPStructures(); 
  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime4) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", "gicp runtime: " << ( std::clock() - starttime4 ) / (double)CLOCKS_PER_SEC );
#endif

  std::clock_t starttime2=std::clock();
#ifndef USE_SIFT_GPU
//  ROS_INFO("Use extractor");
  //cv::Mat topleft, topright;
  //topleft = visual.colRange(0,visual.cols/2+50);
  //topright= visual.colRange(visual.cols/2+50, visual.cols-1);
	//std::vector<cv::KeyPoint> kp1, kp2; 
  //extractor->compute(topleft, kp1, feature_descriptors_); //fill feature_descriptors_ with information 
  extractor->compute(visual, feature_locations_2d_, feature_descriptors_); //fill feature_descriptors_ with information 
#endif
  assert(feature_locations_2d_.size() == feature_locations_3d_.size());
  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime2) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", "Feature extraction runtime: " << ( std::clock() - starttime2 ) / (double)CLOCKS_PER_SEC );

  ROS_INFO_STREAM_COND_NAMED(( (std::clock()-starttime) / (double)CLOCKS_PER_SEC) > global_min_time_reported, "timings", "constructor runtime: "<< ( std::clock() - starttime ) / (double)CLOCKS_PER_SEC  <<"sec");
}
开发者ID:trantu,项目名称:fu_tools,代码行数:79,代码来源:node.cpp


示例10: generateVocabTrainData

/*
generate the data needed to train a codebook/vocabulary for bag-of-words methods
*/
int generateVocabTrainData(std::string trainPath,
						   std::string vocabTrainDataPath,
						   cv::Ptr<cv::FeatureDetector> &detector,
						   cv::Ptr<cv::DescriptorExtractor> &extractor)
{

	//Do not overwrite any files
	std::ifstream checker;
	checker.open(vocabTrainDataPath.c_str());
	if(checker.is_open()) {	
		std::cerr << vocabTrainDataPath << ": Training Data already present" <<
			std::endl;
		checker.close();
		return -1;
	}

	//load training movie
	cv::VideoCapture movie;
	movie.open(trainPath);
	if (!movie.isOpened()) {
		std::cerr << trainPath << ": training movie not found" << std::endl;
		return -1;
	}

	//extract data
	std::cout << "Extracting Descriptors" << std::endl;
	cv::Mat vocabTrainData;
	cv::Mat frame, descs, feats;
	std::vector<cv::KeyPoint> kpts;
	
	std::cout.setf(std::ios_base::fixed); 
	std::cout.precision(0);
	
	while(movie.read(frame)) {

		//detect & extract features
		detector->detect(frame, kpts);
		extractor->compute(frame, kpts, descs);

		//add all descriptors to the training data 
		vocabTrainData.push_back(descs);

		//show progress
		cv::drawKeypoints(frame, kpts, feats);
		cv::imshow("Training Data", feats);
		
		std::cout << 100.0*(movie.get(CV_CAP_PROP_POS_FRAMES) / 
			movie.get(CV_CAP_PROP_FRAME_COUNT)) << "%. " << 
			vocabTrainData.rows << " descriptors         \r";
		fflush(stdout); 
		
		if(cv::waitKey(5) == 27) {
			cv::destroyWindow("Training Data");
			std::cout << std::endl;
			return -1;
		}

	}
	cv::destroyWindow("Training Data");
	std::cout << "Done: " << vocabTrainData.rows << " Descriptors" << std::endl;

	//save the training data
	cv::FileStorage fs;	
	fs.open(vocabTrainDataPath, cv::FileStorage::WRITE);
	fs << "VocabTrainData" << vocabTrainData;
	fs.release();

	return 0;
}
开发者ID:Aleem21,项目名称:lsd_slam_noros,代码行数:72,代码来源:openFABMAPcli.cpp


示例11: close

void cv::gpu::VideoReader_GPU::open(const cv::Ptr<VideoSource>& source)
{
    CV_Assert( !source.empty() );
    close();
    impl_.reset(new Impl(source));
}
开发者ID:Linyes,项目名称:opencv,代码行数:6,代码来源:video_reader.cpp


示例12: generateBOWImageDescs

/*
generate FabMap bag-of-words data : an image descriptor for each frame
*/
int generateBOWImageDescs(std::string dataPath,
							std::string bowImageDescPath,
							std::string vocabPath,
							cv::Ptr<cv::FeatureDetector> &detector,
							cv::Ptr<cv::DescriptorExtractor> &extractor,
							int minWords)
{
	
	cv::FileStorage fs;	

	//ensure not overwriting training data
	std::ifstream checker;
	checker.open(bowImageDescPath.c_str());
	if(checker.is_open()) {	
		std::cerr << bowImageDescPath << ": FabMap Training/Testing Data "
			"already present" << std::endl;
		checker.close();
		return -1;
	}

	//load vocabulary
	std::cout << "Loading Vocabulary" << std::endl;
	fs.open(vocabPath, cv::FileStorage::READ);
	cv::Mat vocab;
	fs["Vocabulary"] >> vocab;
	if (vocab.empty()) {
		std::cerr << vocabPath << ": Vocabulary not found" << std::endl;
		return -1;
	}
	fs.release();

	//use a FLANN matcher to generate bag-of-words representations
	cv::Ptr<cv::DescriptorMatcher> matcher = 
		cv::DescriptorMatcher::create("FlannBased");
	cv::BOWImgDescriptorExtractor bide(extractor, matcher);
	bide.setVocabulary(vocab);

	//load movie
	cv::VideoCapture movie;
	movie.open(dataPath);

	if(!movie.isOpened()) {
		std::cerr << dataPath << ": movie not found" << std::endl;
		return -1;
	}

	//extract image descriptors
	cv::Mat fabmapTrainData;
	std::cout << "Extracting Bag-of-words Image Descriptors" << std::endl;
	std::cout.setf(std::ios_base::fixed);
	std::cout.precision(0);

	std::ofstream maskw;
	
	if(minWords) {
		maskw.open(std::string(bowImageDescPath + "mask.txt").c_str());
	}

	cv::Mat frame, bow;
	std::vector<cv::KeyPoint> kpts;
	
	while(movie.read(frame)) {
		detector->detect(frame, kpts);
		bide.compute(frame, kpts, bow);

		if(minWords) {
			//writing a mask file
			if(cv::countNonZero(bow) < minWords) {
				//frame masked
				maskw << "0" << std::endl;
			} else {
				//frame accepted
				maskw << "1" << std::endl;
				fabmapTrainData.push_back(bow);
			}
		} else {
			fabmapTrainData.push_back(bow);
		}
		
		std::cout << 100.0 * (movie.get(CV_CAP_PROP_POS_FRAMES) / 
			movie.get(CV_CAP_PROP_FRAME_COUNT)) << "%    \r";
		fflush(stdout); 
	}
	std::cout << "Done                                       " << std::endl;
	
	movie.release();

	//save training data
	fs.open(bowImageDescPath, cv::FileStorage::WRITE);
	fs << "BOWImageDescs" << fabmapTrainData;
	fs.release();

	return 0;	
}
开发者ID:Aleem21,项目名称:lsd_slam_noros,代码行数:97,代码来源:openFABMAPcli.cpp


示例13: disparityCallback

  void disparityCallback(const stereo_msgs::DisparityImageConstPtr& msg)
  {
    ROS_DEBUG("Pub Threshold:%f ", LineMOD_Detector::pub_threshold);
    if (!LineMOD_Detector::got_color)
    {
      return;
    }
    bool show_match_result = true;
    cv_bridge::CvImagePtr disp_ptr;
    try
    {
      disp_ptr = cv_bridge::toCvCopy(msg->image, "");
    }
    catch (cv_bridge::Exception& e)
    {
      ROS_ERROR("disp cv_bridge exception: %s", e.what());
      return;
    }

    float f = msg->f;
    float T = msg->T;
    cv::Mat depth_img = (f*T*1000)/(disp_ptr->image).clone();
    depth_img.convertTo(depth_img, CV_16U);
    LineMOD_Detector::sources.push_back(LineMOD_Detector::color_img);
    LineMOD_Detector::sources.push_back(depth_img);

      // Perform matching
      std::vector<cv::linemod::Match> matches;
      std::vector<cv::String> class_ids;
      std::vector<cv::Mat> quantized_images;

      LineMOD_Detector::detector->match(sources, (float)LineMOD_Detector::matching_threshold, matches, class_ids, quantized_images);

      LineMOD_Detector::num_classes = detector->numClasses();
      ROS_DEBUG("Num Classes: %u", LineMOD_Detector::num_classes);
      int classes_visited = 0;
      std::set<std::string> visited;

      ROS_DEBUG("Matches size: %u", (int)matches.size());
      for (int i = 0; (i < (int)matches.size()) && (classes_visited < LineMOD_Detector::num_classes); ++i)
      {
        cv::linemod::Match m = matches[i];
        ROS_DEBUG("Matching count: %u", i);

        if (visited.insert(m.class_id).second)
        {
          ++classes_visited;

          if (show_match_result)
          {
            ROS_DEBUG("Similarity: %5.1f%%; x: %3d; y: %3d; class: %s; template: %3d\n",
                   m.similarity, m.x, m.y, m.class_id.c_str(), m.template_id);
            printf("Similarity: %5.1f%%; x: %3d; y: %3d; class: %s; template: %3d\n",
                   m.similarity, m.x, m.y, m.class_id.c_str(), m.template_id);
          }

          // Draw matching template
          const std::vector<cv::linemod::Template>& templates = LineMOD_Detector::detector->getTemplates(m.class_id, m.template_id);
          drawResponse(templates, LineMOD_Detector::num_modalities, LineMOD_Detector::display, cv::Point(m.x, m.y), LineMOD_Detector::detector->getT(0));
          if (m.similarity > LineMOD_Detector::pub_threshold)
          {
            LineMOD_Detector::publishPoint(templates, m, depth_img, msg->header);
          }

        }
      }

      LineMOD_Detector::sources.clear();
  }
开发者ID:contradict,项目名称:SampleReturn,代码行数:69,代码来源:linemod_detector.cpp


示例14: main

 int main(int argc, char* argv[]) {
     // welcome message
     std::cout<<"*********************************************************************************"<<std::endl;
     std::cout<<"* Retina demonstration for High Dynamic Range compression (tone-mapping) : demonstrates the use of a wrapper class of the Gipsa/Listic Labs retina model."<<std::endl;
     std::cout<<"* This retina model allows spatio-temporal image processing (applied on still images, video sequences)."<<std::endl;
     std::cout<<"* This demo focuses demonstration of the dynamic compression capabilities of the model"<<std::endl;
     std::cout<<"* => the main application is tone mapping of HDR images (i.e. see on a 8bit display a more than 8bits coded (up to 16bits) image with details in high and low luminance ranges"<<std::endl;
     std::cout<<"* The retina model still have the following properties:"<<std::endl;
     std::cout<<"* => It applies a spectral whithening (mid-frequency details enhancement)"<<std::endl;
     std::cout<<"* => high frequency spatio-temporal noise reduction"<<std::endl;
     std::cout<<"* => low frequency luminance to be reduced (luminance range compression)"<<std::endl;
     std::cout<<"* => local logarithmic luminance compression allows details to be enhanced in low light conditions\n"<<std::endl;
     std::cout<<"* for more information, reer to the following papers :"<<std::endl;
     std::cout<<"* Benoit A., Caplier A., Durette B., Herault, J., \"USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING\", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011"<<std::endl;
     std::cout<<"* Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891."<<std::endl;
     std::cout<<"* => reports comments/remarks at [email protected]"<<std::endl;
     std::cout<<"* => more informations and papers at : http://sites.google.com/site/benoitalexandrevision/"<<std::endl;
     std::cout<<"*********************************************************************************"<<std::endl;
     std::cout<<"** WARNING : this sample requires OpenCV to be configured with OpenEXR support **"<<std::endl;
     std::cout<<"*********************************************************************************"<<std::endl;
     std::cout<<"*** You can use free tools to generate OpenEXR images from images sets   :    ***"<<std::endl;
     std::cout<<"*** =>  1. take a set of photos from the same viewpoint using bracketing      ***"<<std::endl;
     std::cout<<"*** =>  2. generate an OpenEXR image with tools like qtpfsgui.sourceforge.net ***"<<std::endl;
     std::cout<<"*** =>  3. apply tone mapping with this program                               ***"<<std::endl;
     std::cout<<"*********************************************************************************"<<std::endl;

     // basic input arguments checking
     if (argc<4)
     {
         help("bad number of parameter");
         return -1;
     }

     bool useLogSampling = !strcmp(argv[argc-1], "log"); // check if user wants retina log sampling processing

     int startFrameIndex=0, endFrameIndex=0, currentFrameIndex=0;
     sscanf(argv[2], "%d", &startFrameIndex);
     sscanf(argv[3], "%d", &endFrameIndex);
     std::string inputImageNamePrototype(argv[1]);

     //////////////////////////////////////////////////////////////////////////////
     // checking input media type (still image, video file, live video acquisition)
     std::cout<<"RetinaDemo: setting up system with first image..."<<std::endl;
     loadNewFrame(inputImageNamePrototype, startFrameIndex, true);

     if (inputImage.empty())
     {
        help("could not load image, program end");
            return -1;
         }

     //////////////////////////////////////////////////////////////////////////////
     // Program start in a try/catch safety context (Retina may throw errors)
     try
     {
         /* create a retina instance with default parameters setup, uncomment the initialisation you wanna test
          * -> if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision)
          */
         if (useLogSampling)
                {
                     retina = cv::bioinspired::createRetina(inputImage.size(),true, cv::bioinspired::RETINA_COLOR_BAYER, true, 2.0, 10.0);
                 }
         else// -> else allocate "classical" retina :
             retina = cv::bioinspired::createRetina(inputImage.size());

        // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup"
        retina->write("RetinaDefaultParameters.xml");

                 // desactivate Magnocellular pathway processing (motion information extraction) since it is not usefull here
                 retina->activateMovingContoursProcessing(false);

         // declare retina output buffers
         cv::Mat retinaOutput_parvo;

         /////////////////////////////////////////////
         // prepare displays and interactions
         histogramClippingValue=0; // default value... updated with interface slider

         std::string retinaInputCorrected("Retina input image (with cut edges histogram for basic pixels error avoidance)");
         cv::namedWindow(retinaInputCorrected,1);
         cv::createTrackbar("histogram edges clipping limit", "Retina input image (with cut edges histogram for basic pixels error avoidance)",&histogramClippingValue,50,callBack_rescaleGrayLevelMat);

         std::string RetinaParvoWindow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping");
         cv::namedWindow(RetinaParvoWindow, 1);
         colorSaturationFactor=3;
         cv::createTrackbar("Color saturation", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &colorSaturationFactor,5,callback_saturateColors);

         retinaHcellsGain=40;
         cv::createTrackbar("Hcells gain", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping",&retinaHcellsGain,100,callBack_updateRetinaParams);

         localAdaptation_photoreceptors=197;
         localAdaptation_Gcells=190;
         cv::createTrackbar("Ph sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_photoreceptors,199,callBack_updateRetinaParams);
         cv::createTrackbar("Gcells sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_Gcells,199,callBack_updateRetinaParams);

        std::string powerTransformedInput("EXR image with basic processing : 16bits=>8bits with gamma correction");

         /////////////////////////////////////////////
         // apply default parameters of user interaction variables
         callBack_updateRetinaParams(1,NULL); // first call for default parameters setup
//.........这里部分代码省略.........
开发者ID:23pointsNorth,项目名称:opencv_contrib,<

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C++ cv::RNG类代码示例发布时间:2022-05-31
下一篇:
C++ cv::OutputArray类代码示例发布时间:2022-05-31
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap