本文整理汇总了C++中BN_GF2m_add函数的典型用法代码示例。如果您正苦于以下问题:C++ BN_GF2m_add函数的具体用法?C++ BN_GF2m_add怎么用?C++ BN_GF2m_add使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了BN_GF2m_add函数的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。
示例1: gf2m_Madd
/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
* projective coordinates.
* Uses algorithm Madd in appendix of
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
*/
static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1,
const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx)
{
BIGNUM *t1, *t2;
int ret = 0;
/* Since Madd is static we can guarantee that ctx != NULL. */
BN_CTX_start(ctx);
t1 = BN_CTX_get(ctx);
t2 = BN_CTX_get(ctx);
if (t2 == NULL) goto err;
if (!BN_copy(t1, x)) goto err;
if (!group->meth->field_mul(group, x1, x1, z2, ctx)) goto err;
if (!group->meth->field_mul(group, z1, z1, x2, ctx)) goto err;
if (!group->meth->field_mul(group, t2, x1, z1, ctx)) goto err;
if (!BN_GF2m_add(z1, z1, x1)) goto err;
if (!group->meth->field_sqr(group, z1, z1, ctx)) goto err;
if (!group->meth->field_mul(group, x1, z1, t1, ctx)) goto err;
if (!BN_GF2m_add(x1, x1, t2)) goto err;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
开发者ID:Chenhx,项目名称:moai-dev,代码行数:33,代码来源:ec2_mult.c
示例2: ec_GF2m_simple_is_on_curve
/*-
* Determines whether the given EC_POINT is an actual point on the curve defined
* in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation:
* y^2 + x*y = x^3 + a*x^2 + b.
*/
int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
BN_CTX *ctx)
{
int ret = -1;
BN_CTX *new_ctx = NULL;
BIGNUM *lh, *y2;
int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
const BIGNUM *, BN_CTX *);
int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
if (EC_POINT_is_at_infinity(group, point))
return 1;
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
/* only support affine coordinates */
if (!point->Z_is_one)
return -1;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return -1;
}
BN_CTX_start(ctx);
y2 = BN_CTX_get(ctx);
lh = BN_CTX_get(ctx);
if (lh == NULL)
goto err;
/*-
* We have a curve defined by a Weierstrass equation
* y^2 + x*y = x^3 + a*x^2 + b.
* <=> x^3 + a*x^2 + x*y + b + y^2 = 0
* <=> ((x + a) * x + y ) * x + b + y^2 = 0
*/
if (!BN_GF2m_add(lh, &point->X, &group->a))
goto err;
if (!field_mul(group, lh, lh, &point->X, ctx))
goto err;
if (!BN_GF2m_add(lh, lh, &point->Y))
goto err;
if (!field_mul(group, lh, lh, &point->X, ctx))
goto err;
if (!BN_GF2m_add(lh, lh, &group->b))
goto err;
if (!field_sqr(group, y2, &point->Y, ctx))
goto err;
if (!BN_GF2m_add(lh, lh, y2))
goto err;
ret = BN_is_zero(lh);
err:
if (ctx)
BN_CTX_end(ctx);
if (new_ctx)
BN_CTX_free(new_ctx);
return ret;
}
开发者ID:commshare,项目名称:testST,代码行数:65,代码来源:ec2_smpl.c
示例3: gf2m_Mdouble
/*-
* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
* coordinates.
* Uses algorithm Mdouble in appendix of
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
* modified to not require precomputation of c=b^{2^{m-1}}.
*/
static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z,
BN_CTX *ctx)
{
BIGNUM *t1;
int ret = 0;
/* Since Mdouble is static we can guarantee that ctx != NULL. */
BN_CTX_start(ctx);
t1 = BN_CTX_get(ctx);
if (t1 == NULL)
goto err;
if (!group->meth->field_sqr(group, x, x, ctx))
goto err;
if (!group->meth->field_sqr(group, t1, z, ctx))
goto err;
if (!group->meth->field_mul(group, z, x, t1, ctx))
goto err;
if (!group->meth->field_sqr(group, x, x, ctx))
goto err;
if (!group->meth->field_sqr(group, t1, t1, ctx))
goto err;
if (!group->meth->field_mul(group, t1, &group->b, t1, ctx))
goto err;
if (!BN_GF2m_add(x, x, t1))
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
开发者ID:03050903,项目名称:godot,代码行数:41,代码来源:ec2_mult.c
示例4: ec_GF2m_simple_invert
int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
{
if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
/* point is its own inverse */
return 1;
if (!EC_POINT_make_affine(group, point, ctx)) return 0;
return BN_GF2m_add(&point->Y, &point->X, &point->Y);
}
开发者ID:vmlemon,项目名称:OpenBSD-lib-patches,代码行数:9,代码来源:ec2_smpl.c
示例5: gf2m_Mxy
/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
* using Montgomery point multiplication algorithm Mxy() in appendix of
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
* Returns:
* 0 on error
* 1 if return value should be the point at infinity
* 2 otherwise
*/
static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1,
BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx)
{
BIGNUM *t3, *t4, *t5;
int ret = 0;
if (BN_is_zero(z1))
{
BN_zero(x2);
BN_zero(z2);
return 1;
}
if (BN_is_zero(z2))
{
if (!BN_copy(x2, x)) return 0;
if (!BN_GF2m_add(z2, x, y)) return 0;
return 2;
}
/* Since Mxy is static we can guarantee that ctx != NULL. */
BN_CTX_start(ctx);
t3 = BN_CTX_get(ctx);
t4 = BN_CTX_get(ctx);
t5 = BN_CTX_get(ctx);
if (t5 == NULL) goto err;
if (!BN_one(t5)) goto err;
if (!group->meth->field_mul(group, t3, z1, z2, ctx)) goto err;
if (!group->meth->field_mul(group, z1, z1, x, ctx)) goto err;
if (!BN_GF2m_add(z1, z1, x1)) goto err;
if (!group->meth->field_mul(group, z2, z2, x, ctx)) goto err;
if (!group->meth->field_mul(group, x1, z2, x1, ctx)) goto err;
if (!BN_GF2m_add(z2, z2, x2)) goto err;
if (!group->meth->field_mul(group, z2, z2, z1, ctx)) goto err;
if (!group->meth->field_sqr(group, t4, x, ctx)) goto err;
if (!BN_GF2m_add(t4, t4, y)) goto err;
if (!group->meth->field_mul(group, t4, t4, t3, ctx)) goto err;
if (!BN_GF2m_add(t4, t4, z2)) goto err;
if (!group->meth->field_mul(group, t3, t3, x, ctx)) goto err;
if (!group->meth->field_div(group, t3, t5, t3, ctx)) goto err;
if (!group->meth->field_mul(group, t4, t3, t4, ctx)) goto err;
if (!group->meth->field_mul(group, x2, x1, t3, ctx)) goto err;
if (!BN_GF2m_add(z2, x2, x)) goto err;
if (!group->meth->field_mul(group, z2, z2, t4, ctx)) goto err;
if (!BN_GF2m_add(z2, z2, y)) goto err;
ret = 2;
err:
BN_CTX_end(ctx);
return ret;
}
开发者ID:Chenhx,项目名称:moai-dev,代码行数:67,代码来源:ec2_mult.c
示例6: ec_GF2m_montgomery_point_multiply
/* Computes scalar*point and stores the result in r.
* point can not equal r.
* Uses a modified algorithm 2P of
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
*
* To protect against side-channel attack the function uses constant time swap,
* avoiding conditional branches.
*/
static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
const EC_POINT *point, BN_CTX *ctx)
{
BIGNUM *x1, *x2, *z1, *z2;
int ret = 0, i;
BN_ULONG mask,word;
if (r == point)
{
ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
return 0;
}
/* if result should be point at infinity */
if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
EC_POINT_is_at_infinity(group, point))
{
return EC_POINT_set_to_infinity(group, r);
}
/* only support affine coordinates */
if (!point->Z_is_one) return 0;
/* Since point_multiply is static we can guarantee that ctx != NULL. */
BN_CTX_start(ctx);
x1 = BN_CTX_get(ctx);
z1 = BN_CTX_get(ctx);
if (z1 == NULL) goto err;
x2 = &r->X;
z2 = &r->Y;
bn_wexpand(x1, group->field.top);
bn_wexpand(z1, group->field.top);
bn_wexpand(x2, group->field.top);
bn_wexpand(z2, group->field.top);
if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */
if (!BN_one(z1)) goto err; /* z1 = 1 */
if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */
if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err;
if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */
/* find top most bit and go one past it */
i = scalar->top - 1;
mask = BN_TBIT;
word = scalar->d[i];
while (!(word & mask)) mask >>= 1;
mask >>= 1;
/* if top most bit was at word break, go to next word */
if (!mask)
{
i--;
mask = BN_TBIT;
}
for (; i >= 0; i--)
{
word = scalar->d[i];
while (mask)
{
BN_consttime_swap(word & mask, x1, x2, group->field.top);
BN_consttime_swap(word & mask, z1, z2, group->field.top);
if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err;
if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err;
BN_consttime_swap(word & mask, x1, x2, group->field.top);
BN_consttime_swap(word & mask, z1, z2, group->field.top);
mask >>= 1;
}
mask = BN_TBIT;
}
/* convert out of "projective" coordinates */
i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
if (i == 0) goto err;
else if (i == 1)
{
if (!EC_POINT_set_to_infinity(group, r)) goto err;
}
else
{
if (!BN_one(&r->Z)) goto err;
r->Z_is_one = 1;
}
/* GF(2^m) field elements should always have BIGNUM::neg = 0 */
BN_set_negative(&r->X, 0);
BN_set_negative(&r->Y, 0);
ret = 1;
//.........这里部分代码省略.........
开发者ID:Chenhx,项目名称:moai-dev,代码行数:101,代码来源:ec2_mult.c
示例7: ec_GF2m_simple_add
/*
* Computes a + b and stores the result in r. r could be a or b, a could be
* b. Uses algorithm A.10.2 of IEEE P1363.
*/
int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
const EC_POINT *b, BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
int ret = 0;
if (EC_POINT_is_at_infinity(group, a)) {
if (!EC_POINT_copy(r, b))
return 0;
return 1;
}
if (EC_POINT_is_at_infinity(group, b)) {
if (!EC_POINT_copy(r, a))
return 0;
return 1;
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
BN_CTX_start(ctx);
x0 = BN_CTX_get(ctx);
y0 = BN_CTX_get(ctx);
x1 = BN_CTX_get(ctx);
y1 = BN_CTX_get(ctx);
x2 = BN_CTX_get(ctx);
y2 = BN_CTX_get(ctx);
s = BN_CTX_get(ctx);
t = BN_CTX_get(ctx);
if (t == NULL)
goto err;
if (a->Z_is_one) {
if (!BN_copy(x0, &a->X))
goto err;
if (!BN_copy(y0, &a->Y))
goto err;
} else {
if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx))
goto err;
}
if (b->Z_is_one) {
if (!BN_copy(x1, &b->X))
goto err;
if (!BN_copy(y1, &b->Y))
goto err;
} else {
if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx))
goto err;
}
if (BN_GF2m_cmp(x0, x1)) {
if (!BN_GF2m_add(t, x0, x1))
goto err;
if (!BN_GF2m_add(s, y0, y1))
goto err;
if (!group->meth->field_div(group, s, s, t, ctx))
goto err;
if (!group->meth->field_sqr(group, x2, s, ctx))
goto err;
if (!BN_GF2m_add(x2, x2, &group->a))
goto err;
if (!BN_GF2m_add(x2, x2, s))
goto err;
if (!BN_GF2m_add(x2, x2, t))
goto err;
} else {
if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
if (!EC_POINT_set_to_infinity(group, r))
goto err;
ret = 1;
goto err;
}
if (!group->meth->field_div(group, s, y1, x1, ctx))
goto err;
if (!BN_GF2m_add(s, s, x1))
goto err;
if (!group->meth->field_sqr(group, x2, s, ctx))
goto err;
if (!BN_GF2m_add(x2, x2, s))
goto err;
if (!BN_GF2m_add(x2, x2, &group->a))
goto err;
}
if (!BN_GF2m_add(y2, x1, x2))
goto err;
if (!group->meth->field_mul(group, y2, y2, s, ctx))
goto err;
if (!BN_GF2m_add(y2, y2, x2))
//.........这里部分代码省略.........
开发者ID:commshare,项目名称:testST,代码行数:101,代码来源:ec2_smpl.c
示例8: ec_GF2m_simple_set_compressed_coordinates
/*-
* Calculates and sets the affine coordinates of an EC_POINT from the given
* compressed coordinates. Uses algorithm 2.3.4 of SEC 1.
* Note that the simple implementation only uses affine coordinates.
*
* The method is from the following publication:
*
* Harper, Menezes, Vanstone:
* "Public-Key Cryptosystems with Very Small Key Lengths",
* EUROCRYPT '92, Springer-Verlag LNCS 658,
* published February 1993
*
* US Patents 6,141,420 and 6,618,483 (Vanstone, Mullin, Agnew) describe
* the same method, but claim no priority date earlier than July 29, 1994
* (and additionally fail to cite the EUROCRYPT '92 publication as prior art).
*/
int ec_GF2m_simple_set_compressed_coordinates(const EC_GROUP *group,
EC_POINT *point,
const BIGNUM *x_, int y_bit,
BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
BIGNUM *tmp, *x, *y, *z;
int ret = 0, z0;
/* clear error queue */
ERR_clear_error();
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
y_bit = (y_bit != 0) ? 1 : 0;
BN_CTX_start(ctx);
tmp = BN_CTX_get(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
z = BN_CTX_get(ctx);
if (z == NULL)
goto err;
if (!BN_GF2m_mod_arr(x, x_, group->poly))
goto err;
if (BN_is_zero(x)) {
if (!BN_GF2m_mod_sqrt_arr(y, &group->b, group->poly, ctx))
goto err;
} else {
if (!group->meth->field_sqr(group, tmp, x, ctx))
goto err;
if (!group->meth->field_div(group, tmp, &group->b, tmp, ctx))
goto err;
if (!BN_GF2m_add(tmp, &group->a, tmp))
goto err;
if (!BN_GF2m_add(tmp, x, tmp))
goto err;
if (!BN_GF2m_mod_solve_quad_arr(z, tmp, group->poly, ctx)) {
unsigned long err = ERR_peek_last_error();
if (ERR_GET_LIB(err) == ERR_LIB_BN
&& ERR_GET_REASON(err) == BN_R_NO_SOLUTION) {
ERR_clear_error();
ECerr(EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES,
EC_R_INVALID_COMPRESSED_POINT);
} else
ECerr(EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES,
ERR_R_BN_LIB);
goto err;
}
z0 = (BN_is_odd(z)) ? 1 : 0;
if (!group->meth->field_mul(group, y, x, z, ctx))
goto err;
if (z0 != y_bit) {
if (!BN_GF2m_add(y, y, x))
goto err;
}
}
if (!EC_POINT_set_affine_coordinates_GF2m(group, point, x, y, ctx))
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
}
开发者ID:commshare,项目名称:testST,代码行数:91,代码来源:ec2_smpl.c
注:本文中的BN_GF2m_add函数示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论