本文整理汇总了C++中FINITE_RNK函数的典型用法代码示例。如果您正苦于以下问题:C++ FINITE_RNK函数的具体用法?C++ FINITE_RNK怎么用?C++ FINITE_RNK使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了FINITE_RNK函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。
示例1: X
/* Check if the vecsz/sz strides are consistent with the problem
being in-place for vecsz.dim[vdim], or for all dimensions
if vdim == RNK_MINFTY. We can't just use tensor_inplace_strides
because rdft transforms have the unfortunate property of
differing input and output sizes. This routine is not
exhaustive; we only return 1 for the most common case. */
int X(rdft2_inplace_strides)(const problem_rdft2 *p, int vdim)
{
INT N, Nc;
INT rs, cs;
int i;
for (i = 0; i + 1 < p->sz->rnk; ++i)
if (p->sz->dims[i].is != p->sz->dims[i].os)
return 0;
if (!FINITE_RNK(p->vecsz->rnk) || p->vecsz->rnk == 0)
return 1;
if (!FINITE_RNK(vdim)) { /* check all vector dimensions */
for (vdim = 0; vdim < p->vecsz->rnk; ++vdim)
if (!X(rdft2_inplace_strides)(p, vdim))
return 0;
return 1;
}
A(vdim < p->vecsz->rnk);
if (p->sz->rnk == 0)
return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os);
N = X(tensor_sz)(p->sz);
Nc = (N / p->sz->dims[p->sz->rnk-1].n) *
(p->sz->dims[p->sz->rnk-1].n/2 + 1);
X(rdft2_strides)(p->kind, p->sz->dims + p->sz->rnk - 1, &rs, &cs);
/* the factor of 2 comes from the fact that RS is the stride
of p->r0 and p->r1, which is twice as large as the strides
in the r2r case */
return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os
&& (X(iabs)(2 * p->vecsz->dims[vdim].os)
>= X(imax)(2 * Nc * X(iabs)(cs), N * X(iabs)(rs))));
}
开发者ID:8cH9azbsFifZ,项目名称:wspr,代码行数:41,代码来源:rdft2-inplace-strides.c
示例2: X
/* Check if the vecsz/sz strides are consistent with the problem
being in-place for vecsz.dim[vdim], or for all dimensions
if vdim == RNK_MINFTY. We can't just use tensor_inplace_strides
because rdft transforms have the unfortunate property of
differing input and output sizes. This routine is not
exhaustive; we only return 1 for the most common case. */
int X(rdft2_inplace_strides)(const problem_rdft2 *p, int vdim)
{
int N, Nc;
int is, os;
int i;
for (i = 0; i + 1 < p->sz->rnk; ++i)
if (p->sz->dims[i].is != p->sz->dims[i].os)
return 0;
if (!FINITE_RNK(p->vecsz->rnk) || p->vecsz->rnk == 0)
return 1;
if (!FINITE_RNK(vdim)) { /* check all vector dimensions */
for (vdim = 0; vdim < p->vecsz->rnk; ++vdim)
if (!X(rdft2_inplace_strides)(p, vdim))
return 0;
return 1;
}
A(vdim < p->vecsz->rnk);
if (p->sz->rnk == 0)
return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os);
N = X(tensor_sz)(p->sz);
Nc = (N / p->sz->dims[p->sz->rnk-1].n) *
(p->sz->dims[p->sz->rnk-1].n/2 + 1);
X(rdft2_strides)(p->kind, p->sz->dims + p->sz->rnk - 1, &is, &os);
return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os
&& X(iabs)(p->vecsz->dims[vdim].os)
>= X(imax)(Nc * X(iabs)(os), N * X(iabs)(is)));
}
开发者ID:abrahamneben,项目名称:orbcomm_beam_mapping,代码行数:37,代码来源:rdft2-inplace-strides.c
示例3: X
/* The inverse of X(tensor_append): splits the sz tensor into
tensor a followed by tensor b, where a's rank is arnk. */
void X(tensor_split)(const tensor *sz, tensor **a, int arnk, tensor **b)
{
A(FINITE_RNK(sz->rnk) && FINITE_RNK(arnk));
*a = X(tensor_copy_sub)(sz, 0, arnk);
*b = X(tensor_copy_sub)(sz, arnk, sz->rnk - arnk);
}
开发者ID:bambang,项目名称:vsipl,代码行数:9,代码来源:tensor7.c
示例4: A
tensor *X(mktensor)(int rnk)
{
tensor *x;
A(rnk >= 0);
#if defined(STRUCT_HACK_KR)
if (FINITE_RNK(rnk) && rnk > 1)
x = (tensor *)MALLOC(sizeof(tensor) + (rnk - 1) * sizeof(iodim),
TENSORS);
else
x = (tensor *)MALLOC(sizeof(tensor), TENSORS);
#elif defined(STRUCT_HACK_C99)
if (FINITE_RNK(rnk))
x = (tensor *)MALLOC(sizeof(tensor) + rnk * sizeof(iodim),
TENSORS);
else
x = (tensor *)MALLOC(sizeof(tensor), TENSORS);
#else
x = (tensor *)MALLOC(sizeof(tensor), TENSORS);
if (FINITE_RNK(rnk) && rnk > 0)
x->dims = (iodim *)MALLOC(sizeof(iodim) * rnk, TENSORS);
else
x->dims = 0;
#endif
x->rnk = rnk;
return x;
}
开发者ID:Aegisub,项目名称:fftw3,代码行数:29,代码来源:tensor.c
示例5: verify_rdft2
void verify_rdft2(bench_problem *p, int rounds, double tol, errors *e)
{
C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
int n, vecn, N;
dofft_rdft2_closure k;
BENCH_ASSERT(p->kind == PROBLEM_REAL);
if (!FINITE_RNK(p->sz->rnk) || !FINITE_RNK(p->vecsz->rnk))
return; /* give up */
k.k.apply = rdft2_apply;
k.k.recopy_input = 0;
k.p = p;
if (rounds == 0)
rounds = 20; /* default value */
n = tensor_sz(p->sz);
vecn = tensor_sz(p->vecsz);
N = n * vecn;
inA = (C *) bench_malloc(N * sizeof(C));
inB = (C *) bench_malloc(N * sizeof(C));
inC = (C *) bench_malloc(N * sizeof(C));
outA = (C *) bench_malloc(N * sizeof(C));
outB = (C *) bench_malloc(N * sizeof(C));
outC = (C *) bench_malloc(N * sizeof(C));
tmp = (C *) bench_malloc(N * sizeof(C));
e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC,
tmp, rounds, tol);
e->l = linear(&k.k, 1, N, inA, inB, inC, outA, outB, outC,
tmp, rounds, tol);
e->s = 0.0;
if (p->sign < 0)
e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
inA, inB, outA, outB,
tmp, rounds, tol, TIME_SHIFT));
else
e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
inA, inB, outA, outB,
tmp, rounds, tol, FREQ_SHIFT));
if (!p->in_place && !p->destroy_input)
preserves_input(&k.k, p->sign < 0 ? mkreal : mkhermitian1,
N, inA, inB, outB, rounds);
bench_free(tmp);
bench_free(outC);
bench_free(outB);
bench_free(outA);
bench_free(inC);
bench_free(inB);
bench_free(inA);
}
开发者ID:8cH9azbsFifZ,项目名称:wspr,代码行数:57,代码来源:verify-rdft2.c
示例6: applicable0
static int applicable0(const solver *ego_, const problem *p_, int *rp)
{
const problem_rdft *p = (const problem_rdft *) p_;
const S *ego = (const S *)ego_;
return (1
&& FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk)
&& p->sz->rnk >= 2
&& picksplit(ego, p->sz, rp)
);
}
开发者ID:8cH9azbsFifZ,项目名称:wspr,代码行数:10,代码来源:rank-geq2.c
示例7: X
tensor *X(tensor_append)(const tensor *a, const tensor *b)
{
if (!FINITE_RNK(a->rnk) || !FINITE_RNK(b->rnk)) {
return X(mktensor)(RNK_MINFTY);
} else {
tensor *x = X(mktensor)(a->rnk + b->rnk);
dimcpy(x->dims, a->dims, a->rnk);
dimcpy(x->dims + a->rnk, b->dims, b->rnk);
return x;
}
}
开发者ID:Aegisub,项目名称:fftw3,代码行数:11,代码来源:tensor5.c
示例8: while
/* do what I mean */
static bench_tensor *dwim(bench_tensor *t, bench_iodim **last_iodim,
n_transform nti, n_transform nto,
bench_iodim *dt)
{
int i;
bench_iodim *d, *d1;
if (!FINITE_RNK(t->rnk) || t->rnk < 1)
return t;
i = t->rnk;
d1 = *last_iodim;
while (--i >= 0) {
d = t->dims + i;
if (!d->is)
d->is = d1->is * transform_n(d1->n, d1==dt ? nti : SAME);
if (!d->os)
d->os = d1->os * transform_n(d1->n, d1==dt ? nto : SAME);
d1 = d;
}
*last_iodim = d1;
return t;
}
开发者ID:376473984,项目名称:fftw3,代码行数:26,代码来源:problem.c
示例9: dimcpy
static void dimcpy(iodim *dst, const iodim *src, int rnk)
{
int i;
if (FINITE_RNK(rnk))
for (i = 0; i < rnk; ++i)
dst[i] = src[i];
}
开发者ID:Aegisub,项目名称:fftw3,代码行数:7,代码来源:tensor5.c
示例10: fftw_tensor_contiguous
/* Like tensor_copy, but eliminate n == 1 dimensions, which
never affect any transform or transform vector.
Also, we sort the tensor into a canonical order of decreasing
is. In general, processing a loop/array in order of
decreasing stride will improve locality; sorting also makes the
analysis in fftw_tensor_contiguous (below) easier. The choice
of is over os is mostly arbitrary, and hopefully
shouldn't affect things much. Normally, either the os will be
in the same order as is (for e.g. multi-dimensional
transforms) or will be in opposite order (e.g. for Cooley-Tukey
recursion). (Both forward and backwards traversal of the tensor
are considered e.g. by vrank-geq1, so sorting in increasing
vs. decreasing order is not really important.) */
tensor *X(tensor_compress)(const tensor *sz)
{
int i, rnk;
tensor *x;
A(FINITE_RNK(sz->rnk));
for (i = rnk = 0; i < sz->rnk; ++i) {
A(sz->dims[i].n > 0);
if (sz->dims[i].n != 1)
++rnk;
}
x = X(mktensor)(rnk);
for (i = rnk = 0; i < sz->rnk; ++i) {
if (sz->dims[i].n != 1)
x->dims[rnk++] = sz->dims[i];
}
if (rnk > 1) {
qsort(x->dims, (size_t)x->rnk, sizeof(iodim),
(int (*)(const void *, const void *))X(dimcmp));
}
return x;
}
开发者ID:bambang,项目名称:vsipl,代码行数:39,代码来源:tensor7.c
示例11: A
problem *X(mkproblem_dft)(const tensor *sz, const tensor *vecsz,
R *ri, R *ii, R *ro, R *io)
{
problem_dft *ego =
(problem_dft *)X(mkproblem)(sizeof(problem_dft), &padt);
A((ri == ro) == (ii == io)); /* both in place or both out of place */
A(X(tensor_kosherp)(sz));
A(X(tensor_kosherp)(vecsz));
/* enforce pointer equality if untainted pointers are equal */
if (UNTAINT(ri) == UNTAINT(ro))
ri = ro = JOIN_TAINT(ri, ro);
if (UNTAINT(ii) == UNTAINT(io))
ii = io = JOIN_TAINT(ii, io);
/* more correctness conditions: */
A(TAINTOF(ri) == TAINTOF(ii));
A(TAINTOF(ro) == TAINTOF(io));
ego->sz = X(tensor_compress)(sz);
ego->vecsz = X(tensor_compress_contiguous)(vecsz);
ego->ri = ri;
ego->ii = ii;
ego->ro = ro;
ego->io = io;
A(FINITE_RNK(ego->sz->rnk));
return &(ego->super);
}
开发者ID:abrahamneben,项目名称:orbcomm_beam_mapping,代码行数:30,代码来源:problem.c
示例12: applicable0
static int applicable0(const solver *ego_, const problem *p_,
const planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_rdft *p = (const problem_rdft *) p_;
return (1
&& FINITE_RNK(p->vecsz->rnk)
/* problem must be a nontrivial transform, not just a copy */
&& p->sz->rnk > 0
&& (0
/* problem must be in-place & require some
rearrangement of the data */
|| (p->I == p->O
&& !(X(tensor_inplace_strides2)(p->sz, p->vecsz)))
/* or problem must be out of place, transforming
from stride 1/2 to bigger stride, for apply_after */
|| (p->I != p->O && ego->adt->apply == apply_after
&& !NO_DESTROY_INPUTP(plnr)
&& X(tensor_min_istride)(p->sz) <= 2
&& X(tensor_min_ostride)(p->sz) > 2)
/* or problem must be out of place, transforming
to stride 1/2 from bigger stride, for apply_before */
|| (p->I != p->O && ego->adt->apply == apply_before
&& X(tensor_min_ostride)(p->sz) <= 2
&& X(tensor_min_istride)(p->sz) > 2)
)
);
}
开发者ID:376473984,项目名称:fftw3,代码行数:34,代码来源:indirect.c
示例13: applicable0
static int applicable0(const problem *p_)
{
const problem_dft *p = (const problem_dft *) p_;
return ((p->sz->rnk == 1 && p->vecsz->rnk == 0)
|| (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk))
);
}
开发者ID:376473984,项目名称:fftw3,代码行数:7,代码来源:dft-r2hc.c
示例14: tensor_rowmajor_transposedp
static int tensor_rowmajor_transposedp(bench_tensor *t)
{
bench_iodim *d;
int i;
BENCH_ASSERT(FINITE_RNK(t->rnk));
if (t->rnk < 2)
return 0;
d = t->dims;
if (d[0].is != d[1].is * d[1].n
|| d[0].os != d[1].is
|| d[1].os != d[0].os * d[0].n)
return 0;
if (t->rnk > 2 && d[1].is != d[2].is * d[2].n)
return 0;
for (i = 2; i + 1 < t->rnk; ++i) {
d = t->dims + i;
if (d[0].is != d[1].is * d[1].n
|| d[0].os != d[1].os * d[1].n)
return 0;
}
if (t->rnk > 2 && t->dims[t->rnk-1].is != t->dims[t->rnk-1].os)
return 0;
return 1;
}
开发者ID:dstuck,项目名称:tinker_integrated_PIMC,代码行数:27,代码来源:mpi-bench.c
示例15: A
problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
R *r0, R *r1, R *cr, R *ci,
rdft_kind kind)
{
problem_rdft2 *ego;
A(kind == R2HC || kind == R2HCII || kind == HC2R || kind == HC2RIII);
A(X(tensor_kosherp)(sz));
A(X(tensor_kosherp)(vecsz));
A(FINITE_RNK(sz->rnk));
/* require in-place problems to use r0 == cr */
if (UNTAINT(r0) == UNTAINT(ci))
return X(mkproblem_unsolvable)();
/* FIXME: should check UNTAINT(r1) == UNTAINT(cr) but
only if odd elements exist, which requires compressing the
tensors first */
if (UNTAINT(r0) == UNTAINT(cr))
r0 = cr = JOIN_TAINT(r0, cr);
ego = (problem_rdft2 *)X(mkproblem)(sizeof(problem_rdft2), &padt);
if (sz->rnk > 1) { /* have to compress rnk-1 dims separately, ugh */
tensor *szc = X(tensor_copy_except)(sz, sz->rnk - 1);
tensor *szr = X(tensor_copy_sub)(sz, sz->rnk - 1, 1);
tensor *szcc = X(tensor_compress)(szc);
if (szcc->rnk > 0)
ego->sz = X(tensor_append)(szcc, szr);
else
ego->sz = X(tensor_compress)(szr);
X(tensor_destroy2)(szc, szr); X(tensor_destroy)(szcc);
} else {
ego->sz = X(tensor_compress)(sz);
}
ego->vecsz = X(tensor_compress_contiguous)(vecsz);
ego->r0 = r0;
ego->r1 = r1;
ego->cr = cr;
ego->ci = ci;
ego->kind = kind;
A(FINITE_RNK(ego->sz->rnk));
return &(ego->super);
}
开发者ID:Aegisub,项目名称:fftw3,代码行数:47,代码来源:problem2.c
示例16: transpose_tensor
static void transpose_tensor(bench_tensor *t)
{
if (!FINITE_RNK(t->rnk) || t->rnk < 2)
return;
t->dims[0].os = t->dims[1].os;
t->dims[1].os = t->dims[0].os * t->dims[0].n;
}
开发者ID:376473984,项目名称:fftw3,代码行数:8,代码来源:problem.c
示例17: XM
/* Return whether sz is distributed for k according to a simple
1d block distribution in the first or second dimensions */
int XM(is_block1d)(const dtensor *sz, block_kind k)
{
int i;
if (!FINITE_RNK(sz->rnk)) return 0;
for (i = 0; i < sz->rnk && num_blocks_kind(sz->dims + i, k) == 1; ++i) ;
return(i < sz->rnk && i < 2 && XM(is_local_after)(i + 1, sz, k));
}
开发者ID:Aegisub,项目名称:fftw3,代码行数:10,代码来源:block.c
示例18: applicable
static int applicable(const solver *ego_, const problem *p_)
{
const problem_dft *p = (const problem_dft *) p_;
UNUSED(ego_);
return 0
/* case 1 : -infty vector rank */
|| (!FINITE_RNK(p->vecsz->rnk))
/* case 2 : rank-0 in-place dft */
|| (1
&& p->sz->rnk == 0
&& FINITE_RNK(p->vecsz->rnk)
&& p->ro == p->ri
&& X(tensor_inplace_strides)(p->vecsz)
);
}
开发者ID:dstuck,项目名称:tinker_integrated_PIMC,代码行数:18,代码来源:nop.c
示例19: A
/* Like X(tensor_copy), but copy only rnk dimensions starting
with start_dim. */
tensor *X(tensor_copy_sub)(const tensor *sz, int start_dim, int rnk)
{
tensor *x;
A(FINITE_RNK(sz->rnk) && start_dim + rnk <= sz->rnk);
x = X(mktensor)(rnk);
dimcpy(x->dims, sz->dims + start_dim, rnk);
return x;
}
开发者ID:Aegisub,项目名称:fftw3,代码行数:11,代码来源:tensor5.c
示例20: A
problem *XM(mkproblem_rdft)(const dtensor *sz, INT vn,
R *I, R *O,
MPI_Comm comm,
const rdft_kind *kind, unsigned flags)
{
problem_mpi_rdft *ego;
int i, rnk = sz->rnk;
int n_pes;
A(XM(dtensor_validp)(sz) && FINITE_RNK(sz->rnk));
MPI_Comm_size(comm, &n_pes);
A(n_pes >= XM(num_blocks_total)(sz, IB)
&& n_pes >= XM(num_blocks_total)(sz, OB));
A(vn >= 0);
#if defined(STRUCT_HACK_KR)
ego = (problem_mpi_rdft *) X(mkproblem)(sizeof(problem_mpi_rdft)
+ sizeof(rdft_kind)
* (rnk > 0 ? rnk - 1 : 0), &padt);
#elif defined(STRUCT_HACK_C99)
ego = (problem_mpi_rdft *) X(mkproblem)(sizeof(problem_mpi_rdft)
+ sizeof(rdft_kind) * rnk, &padt);
#else
ego = (problem_mpi_rdft *) X(mkproblem)(sizeof(problem_mpi_rdft), &padt);
ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * rnk, PROBLEMS);
#endif
/* enforce pointer equality if untainted pointers are equal */
if (UNTAINT(I) == UNTAINT(O))
I = O = JOIN_TAINT(I, O);
ego->sz = XM(dtensor_canonical)(sz, 0);
ego->vn = vn;
ego->I = I;
ego->O = O;
for (i = 0; i< ego->sz->rnk; ++i)
ego->kind[i] = kind[i];
/* canonicalize: replace TRANSPOSED_IN with TRANSPOSED_OUT by
swapping the first two dimensions (for rnk > 1) */
if ((flags & TRANSPOSED_IN) && ego->sz->rnk > 1) {
rdft_kind k = ego->kind[0];
ddim dim0 = ego->sz->dims[0];
ego->sz->dims[0] = ego->sz->dims[1];
ego->sz->dims[1] = dim0;
ego->kind[0] = ego->kind[1];
ego->kind[1] = k;
flags &= ~TRANSPOSED_IN;
flags ^= TRANSPOSED_OUT;
}
ego->flags = flags;
MPI_Comm_dup(comm, &ego->comm);
return &(ego->super);
}
开发者ID:phillipstanleymarbell,项目名称:sunflower-simulator,代码行数:56,代码来源:rdft-problem.c
注:本文中的FINITE_RNK函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论